Skip to main content
Log in

Mathematical physics

A tight squeeze

  • News & Views
  • Published:

From Nature

View current issue Submit your manuscript

How can identical particles be crammed together as densely as possible? A combination of theory and computer simulations shows how the answer to this intricate problem depends on the shape of the particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: Two-dimensional view of packings.

References

  1. Torquato, S. & Jiao, Y. Nature 460, 876–879 (2009).

    Article  ADS  CAS  Google Scholar 

  2. Hales, T. C. Ann. Math. 162, 1065–1185 (2005).

    Article  MathSciNet  Google Scholar 

  3. Kepler, J. Strena Seu de Nive Sexangula [A New Year's Gift of Hexagonal Snow] (Godfrey Tampach, 1611).

    Google Scholar 

  4. Aristotle On the Heavens Book III, Pt 8 (transl. Guthrie, W. K. C.) (Harvard Univ. Press, 1939).

  5. Minkowski, H. Nachr. Akad. Wiss. Göttingen Math. Phys. Kl. II, 311–355 (1904).

  6. Betke, U. & Henk, M. Comput. Geom. 16, 157–186 (2000).

    Article  MathSciNet  Google Scholar 

  7. Chen, E. R. Discrete Comput. Geom. 40, 214–240 (2008).

    Article  MathSciNet  Google Scholar 

  8. Hoylman, D. J. Bull. Am. Math. Soc. 76, 135–137 (1970).

    Article  MathSciNet  Google Scholar 

  9. Conway, J. H. & Torquato, S. Proc. Natl Acad. Sci. USA 103, 10612–10617 (2006).

    Article  ADS  MathSciNet  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cohn, H. A tight squeeze. Nature 460, 801–802 (2009). https://doi.org/10.1038/460801a

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/460801a

  • Springer Nature Limited

Navigation