Skip to main content
Log in

Methane formation from long-chain alkanes by anaerobic microorganisms

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

Biological formation of methane is the terminal process of biomass degradation in aquatic habitats where oxygen, nitrate, ferric iron and sulphate have been depleted as electron acceptors. The pathway leading from dead biomass to methane through the metabolism of anaerobic bacteria and archaea is well understood for easily degradable biomolecules such as carbohydrates, proteins and lipids1,2. However, little is known about the organic compounds that lead to methane in old anoxic sediments where easily degradable biomolecules are no longer available. One class of naturally formed long-lived compounds in such sediments is the saturated hydrocarbons (alkanes)3,4,5. Alkanes are usually considered to be inert in the absence of oxygen, nitrate or sulphate6, and the analysis of alkane patterns is often used for biogeochemical characterization of sediments7,8. However, alkanes might be consumed in anoxic sediments below the zone of sulphate reduction9,10, but the underlying process has not been elucidated. Here we used enrichment cultures to show that the biological conversion of long-chain alkanes to the simplest hydrocarbon, methane, is possible under strictly anoxic conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: Formation of gas in an anaerobic enrichment culture growing in 100 mineral medium with hexadecane (filled circles) as the only organic substrate.
Figure 2: Reconstructed phylogenetic trees based on 16S rRNA sequences that were retrieved from the methanogenic enrichment culture on hexadecane.

Similar content being viewed by others

References

  1. Ferry,J. G. Methanogenesis (Chapman & Hall, New York, 1993).

    Book  Google Scholar 

  2. Schink,B. Energetics of syntrophic cooperation in methanogenic degradation. Microbiol. Mol. Biol. Rev. 61, 262–280 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Birch,L. & Bachofen,R. in Biotechnology Vol. 6b (ed. Rehm, H.-J.) 71–99 (VCH, Weinheim, 1988).

    Google Scholar 

  4. Blumer,M. Guillard,R. & Chase,T. Hydrocarbons of marine phytoplankton. Mar. Biol. 8, 183–189 (1971).

    Article  CAS  Google Scholar 

  5. Tissot,B. P. & Welte,D. H. Petroleum Formation and Occurrence (Springer, Berlin, 1984).

    Book  Google Scholar 

  6. Heider,J., Spormann,A. M., Beller,H. R. & Widdel,F. Anaerobic bacterial metabolism of hydrocarbons. FEMS Microbiol. Rev. 22, 459–473 (1999).

    Article  Google Scholar 

  7. Eglinton,G. Hydrocarbons and fatty acids in living organisms and recent and ancient sediments. Adv. Org. Geochem. 31, 1–24 (1968).

    Google Scholar 

  8. Simoneit,B. R. T. Biomarker geochemistry of black shales from Cretaceous oceans—an overview. Mar. Geol. 70, 9–41 (1986).

    Article  ADS  CAS  Google Scholar 

  9. Giger,W., Schaffner,C. & Wakeham,S. G. Aliphatic and olefinic hydrocarbons in recent sediments of Greifensee, Switzerland. Geochim. Cosmochim. Acta 44, 119–129 (1980).

    Article  ADS  CAS  Google Scholar 

  10. Wersin,P., Höhener,P., Giovanoli,R. & Stumm,W. Early diagenetic influence on iron transformations in a freshwater lake sediment. Chem. Geol. 90l, 233–252 (1991).

    Article  ADS  Google Scholar 

  11. Rozanova,E. P., Savvichev,A. S., Miller,Y. M. & Ivanov,M. V. Microbial processes in a West Siberian oil field flooded with waters containing a complex of organic compounds. Microbiology 66, 718–725 (1997).

    CAS  Google Scholar 

  12. Ludwig,W. et al. Bacterial phylogeny based on comparative sequence analysis. Electrophoresis 19, 554–568 (1998).

    Article  CAS  Google Scholar 

  13. Widdel,F. & Bak,F. in The Prokaryotes (eds Balows, A., Trüper, H. G., Dworkin, M., Harder, W. & Schleifer, K.-H.) 3352–3392 (Springer, New York, 1992).

    Book  Google Scholar 

  14. Muller,F. M. On methane fermentation of higher alkanes. Antonie van Leeuwenhoek 23, 269–384 (1957).

    Article  Google Scholar 

  15. Schink,B. Degradation of unsaturated hydrocarbons by methanogenic enrichment cultures. FEMS Microbiol. Ecol. 31, 69–77 (1985).

    Article  ADS  CAS  Google Scholar 

  16. Harder,J. & Foss,S. Anaerobic formation of the aromatic hydrocarbon p-cymene from monoterpenes by methanogenic enrichment cultures. Geomicrobiol. J. (in the press).

  17. Lovley,D. R. & Chapelle,F. H. Deep subsurface microbial processes. Rev. Geophys. 33, 365–381 (1995).

    Article  ADS  Google Scholar 

  18. Beier,J. A., Wakeham,S. G., Pilskaln,C. H. & Honjo,S. Enrichment in saturated compounds of Black Sea interfacial sediment. Nature 351, 642–644 (1991).

    Article  ADS  CAS  Google Scholar 

  19. Parkes,R. J. et al. Deep bacterial biosphere in Pacific Ocean sediments. Nature 371, 410–413 (1994).

    Article  ADS  Google Scholar 

  20. Scott,A. R., Kaiser,W. R. & Ayers, W. D. Jr Thermogenic and secondary biogenic gases, San Juan Basin, Colorado and New Mexico—implications for coalbed gas producibility. Am. Assoc. Pet. Geol. Bull. 78, 1186–1209 (1994).

    CAS  Google Scholar 

  21. Martini,A. M., Budai,J. M., Walter,L. M. & Schoell,M. Microbial generation of economic accumulations of methane within a shallow organic-rich shale. Nature 383, 155–158 (1996).

    Article  ADS  CAS  Google Scholar 

  22. Rowe,D. & Muehlenbachs,A. Low-temperature thermal generation of hydrocarbon gases in shallow shales. Nature 398, 61–63 (1999).

    Article  ADS  CAS  Google Scholar 

  23. Seiler,W., Giehl,H. & Roggendorf,P. Detection of carbon monoxide and hydrogen by conversion of mercury oxide to mercury vapor. Atmos. Technol. 12, 40–45 (1980).

    Google Scholar 

  24. Albert,D. B. & Martens,C. S. Determination of low-molecular-weight organic acid concentrations in seawater and pore-water samples via HPLC. Mar. Chem. 56, 27–37 (1997).

    Article  CAS  Google Scholar 

  25. Hayes,J. M., Freeman,K. H., Popp,B. N. & Hoham,C. H. Compound-specific isotope analyses: a novel tool for reconstruction of ancient biogeochemical processes. Org. Geochem. 16, 1115–1128 (1990).

    Article  CAS  Google Scholar 

  26. Strunk,O. & Ludwig,W. in http://www.mikro.biologie.tu-muenchen.de (Department of Microbiology, Technische Univ. München, Munich, Germany, 1998).

  27. Dean,J. A. Lange's Handbook of Chemistry (McGraw-Hill, New York, 1992).

    Google Scholar 

  28. Lide,D. R. Handbook of Chemistry and Physics (CRC, Boca Raton, 1998).

    Google Scholar 

  29. Dojka,M. A., Hugenholtz,P., Haack,S. K. & Pace,N. R. Microbial diversity in a hydrocarbon- and chlorinated-solvent-contaminated aquifer undergoing intrinsic bioremediation. Appl. Environ. Microbiol. 64, 3869–3877 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank C. Garms, University of Hamburg, for synthesis of labelled hexadecane. We thank J. Oesselmann and A. Hilkert at Finnigan-MAT, Bremen, for providing the IRM-GC-MS, and N. Finke, Max Planck Institute, Bremen, for fatty-acid analysis. This study was supported by the Max-Planck-Gesellschaft and the Fonds der Chemischen Industrie.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Friedrich Widdel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zengler, K., Richnow, H., Rosselló-Mora, R. et al. Methane formation from long-chain alkanes by anaerobic microorganisms. Nature 401, 266–269 (1999). https://doi.org/10.1038/45777

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/45777

  • Springer Nature Limited

This article is cited by

Navigation