Skip to main content

Advertisement

Log in

Gene therapy

Biological pacemaker created by gene transfer

  • Brief Communication
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

The pacemaker cells of the heart initiate the heartbeat, sustain the circulation, and dictate the rate and rhythm of cardiac contraction1. Circulatory collapse ensues when these specialized cells are damaged by disease, a situation that currently necessitates the implantation of an electronic pacemaker2. Here we report the use of viral gene transfer to convert quiescent heart-muscle cells into pacemaker cells, and the successful generation of spontaneous, rhythmic electrical activity in the ventricle in vivo. Our results indicate that genetically engineered pacemakers could be developed as a possible alternative to implantable electronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: Suppression of Kir2.1 channels unleashes pacemaker activity.

Similar content being viewed by others

References

  1. Brooks, C. M. & Lu, H.-H The Sinoatrial Pacemaker of the Heart (Thomas, Springfield, Illinois, 1972).

    Google Scholar 

  2. Kusumoto, F. M. & Goldschlager, N. N. Engl. J. Med. 334, 89–97 (1996).

    Article  CAS  Google Scholar 

  3. Wobus, A. M., Rohwedel, J., Maltsev, V. & Hescheler, J. Ann. NY Acad. Sci. 752, 460–469 (1995).

    Article  ADS  CAS  Google Scholar 

  4. Kubo, Y., Baldwin, T. J., Jan, Y. N. & Jan, L. Y. Nature 362, 127–333 (1993).

    Article  ADS  CAS  Google Scholar 

  5. Herskowitz, I. Nature 329, 219–222 (1987).

    Article  ADS  CAS  Google Scholar 

  6. Slesinger, P. A. et al. Neuron 16, 321–331 (1996).

    Article  CAS  Google Scholar 

  7. Irisawa, H., Brown, H. F. & Giles, W. Physiol. Rev. 73, 197–227 (1993).

    Article  CAS  Google Scholar 

  8. Santoro, B. & Tibbs, G. R. Ann. NY Acad. Sci. 868, 741–764 (1999).

    Article  ADS  CAS  Google Scholar 

  9. Imoto, Y., Ehara, T. & Matsuura, H. Am. J. Physiol. 252, 325–333 (1987).

    Google Scholar 

  10. Hirano, Y. & Hiraoka, M. J. Physiol. (Lond.) 395, 455–472 (1988).

    Article  CAS  Google Scholar 

  11. Rodriguez-Contreras, A., Nonner, W. & Yamoah, E. N. J. Physiol. (Lond.) 538, 729–745 (2002).

    Article  CAS  Google Scholar 

  12. Campbell, D. L., Giles, W. R. & Shibata, E. F. J. Physiol. (Lond.) 403, 239–266 (1988).

    Article  CAS  Google Scholar 

  13. Brown, H. F., Kimura, J., Noble, D., Noble, S. J. & Taupignon, A. Proc. R. Soc. Lond. B 222, 329–347 (1984).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miake, J., Marbán, E. & Nuss, H. Biological pacemaker created by gene transfer. Nature 419, 132–133 (2002). https://doi.org/10.1038/419132b

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/419132b

  • Springer Nature Limited

This article is cited by

Navigation