Skip to main content

Advertisement

Log in

Storage of hydrogen in single-walled carbon nanotubes

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

Pores of molecular dimensions can adsorb large quantities of gases owing to the enhanced density of the adsorbed material inside the pores1, a consequence of the attractive potential of the pore walls. Pederson and Broughton have suggested2 that carbon nanotubes, which have diameters of typically a few nanometres, should be able to draw up liquids by capillarity, and this effect has been seen for low-surface-tension liquids in large-diameter, multi-walled nanotubes3. Here we show that a gas can condense to high density inside narrow, single-walled nanotubes (SWNTs). Temperature-programmed desorption spectrosocopy shows that hydrogen will condense inside SWNTs under conditions that do not induce adsorption within a standard mesoporous activated carbon. The very high hydrogen uptake in these materials suggests that they might be effective as a hydrogen-storage material for fuel-cell electric vehicles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gregg, S. J. & Sing, K. S. W. Adsorption, Surface Area and Porosity (Academic, London, 1982).

    Google Scholar 

  2. Pederson, M. R. & Broughton, J. Q. Nanocapillarity in fullerene tubules. Phys. Rev. Lett. 69, 2689–2692 (1992).

    Article  ADS  CAS  Google Scholar 

  3. Dujardin, E., Ebbesen, T. W., Hiura, H. & Tanigaki, K. Capillarity and wetting of carbon nanotubes. Science 265, 1850–1852 (1994).

    Article  ADS  CAS  Google Scholar 

  4. Bethune, D. S. et al. Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature 363, 605–607 (1993).

    Article  ADS  CAS  Google Scholar 

  5. Pace, E. L. & Siebert, A. R. Heat of adsorption of parahydrogen and orthodeuterium on graphon. J. Phys. Chem. 63, 1398–1400 (1959).

    Article  CAS  Google Scholar 

  6. Bandosz, T. J., Jagiello, J., Amankwah, K. A. G. & Schwarz, J. A. Chemical and structural properties of clay minerals modified by inorganic and organic material. Clay Miner. 27, 435–444 (1992).

    Article  ADS  CAS  Google Scholar 

  7. Schwarz, J. A. Final Report for the Tasks XC-1-1108-1 and XAE-3-13346-01 (National Renewable Energy Laboratory, Golden, Colorado, 1994).

    Google Scholar 

  8. Dillon, A. C., Bekkedahl, T. A., Cahill, A. F., Jones, K. M. & Heben, M. J. Carbon nanotube materials for hydrogen storage. Proc. 1995 U.S. DOE Hydrogen Program Review 521–541 (National Renewable Energy Laboratory, Golden, Colorado, 1995).

  9. Madix, R. J. The application of flash desorption spectroscopy to chemical reactions on surfaces: Temperature programmed reaction spectroscopy. Chemistry and Physics of Solid Surfaces (ed. Vanselov, R.) 63–72 (CRC, Boca Raton, 1979).

    Google Scholar 

  10. Ibok, E. E. & Ollis, D. F. Temperature programmed desorption from porous catalysts: Shape index analysis. J. Catal. 66, 391–400 (1980).

    Article  CAS  Google Scholar 

  11. Peterson, B. K. & Gubbins, K. E. Phase transitions in a cylindrical pore: Grand canonical Monte Carlo, mean field theory, and the Kelvin equation. Molec. Phys. 62, 215–226 (1987).

    Article  ADS  CAS  Google Scholar 

  12. Ajayan, P. M. et al. Opening carbon nanotubes with oxygen and implications for filling. Nature 362, 522–525 (1993).

    Article  ADS  CAS  Google Scholar 

  13. Tsang, S. C., Harris, P. J. F. & Green, M. L. H. Thinning and opening of carbon nanotubes by oxidation using carbon dioxide. Nature 362, 520–522 (1993).

    Article  ADS  CAS  Google Scholar 

  14. Ernst, K. H., Schwarz, E. & Christmann, K. The interaction of hydrogen with a cobalt (1010) surface. J. Chem. Phys. 101, 5388–5401 (1994).

    Article  ADS  CAS  Google Scholar 

  15. Lisowski, W. The kinetics of the low-temperature hydrogen interaction with polycrystalline cobalt films. Appl. Surf. Sci. 37, 272–282 (1989).

    Article  ADS  CAS  Google Scholar 

  16. Nielsen, M., McTague, J. P. & Ellenson, W. Adsorbed layers of D2, H2, O2, and 3He on graphite studied by neutron scattering. J. Phys. 38, C4/10–C4/18 (1977).

    Google Scholar 

  17. DeLuchi, M. Hydrogen Fuel-Cell Vehicles (Institute of Transportation Studies, Univ. California, Davis, 1992).

    Google Scholar 

  18. DeLuchi, M. A. Hydrogen vehicles: An evaluation of fuel storage, performance, safety, environmental impacts, and cost. Int. J. Hydrogen Energy 14, 81–130 (1989).

    Article  CAS  Google Scholar 

  19. T-Raissi, A. & Sadhu, A. Systems study of metal hydride storage requirements. Proc. 1994 DOE/NREL Hydrogen Program Review 85–106 (National Renewable Energy Laboratory, Golden, Colorado, 1994).

    Google Scholar 

  20. Thess, A. et al. Crystalline ropes of metallic carbon nanotubes. Science 273, 483–487 (1996).

    Article  ADS  CAS  Google Scholar 

  21. Gordon, R. Composite pressure vessels for gaseous hydrogen-powered vehicles. Hydrogen Energy Progress V (eds Veziroglu, T. N. Taylor, J. B.) 1225–1236 (Pergamon, New York, 1984).

    Google Scholar 

  22. Dresselhaus, M. S., Dresselhaus, G. & Saito, R. C60 related tubules. Solid State Commun. 84, 201–205 (1992).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dillon, A., Jones, K., Bekkedahl, T. et al. Storage of hydrogen in single-walled carbon nanotubes. Nature 386, 377–379 (1997). https://doi.org/10.1038/386377a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/386377a0

  • Springer Nature Limited

This article is cited by

Navigation