Skip to main content
Log in

Traction forces of cytokinesis measured with optically modified elastic substrata

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

Animal cells dividing in culture undergo a dramatic sequence of morphological changes, characterized by cytoskeletal disassembly as cells round up, redistribution of actin, myosins and other cytoplasmic and surface molecules into the cleavage furrow1–11, and respreading12, before daughter cells finally separate at the mid-body13. Knowledge of forces governing these movements is critical to understanding their mechanisms, including whether formation of the cleavage furrow results from increased force generation at the equator14,15 or relaxation at the poles16, and whether traction force subsequently mediates cytofission of the intercellular bridge5,13,17,18. We have quantitatively mapped traction forces in dividing cells, by extending the silicone-rubber substratum method19 to detect forces of nanonewtons to micronewtons. We used a new silicone polymer to fabricate substrata whose compliance can be adjusted precisely by ultraviolet irradiation. We show that traction force appears locally at the furrow in the absence of relaxation at the poles during cleavage. Force also rises as connected daughter cells respread and attempt to separate, suggesting that tension contributes to the severing of the intercellular bridge when cytokinesis is completed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fishkind, D. J. & Wang, Y. L. Curr. Opin. Cell Biol. 7, 23–31 (1995).

    Article  CAS  Google Scholar 

  2. Salmon, E. D. Curr. Opin. Cell Biol. 1, 541–547 (1989).

    Article  CAS  Google Scholar 

  3. Cao, L. G. & Wang, Y. L. J. Cell Biol. 111, 1905–1911 (1990).

    Article  CAS  Google Scholar 

  4. Sanger, J. M., Dome, J. S., Hock, R. S., Mittal, B. & Sanger, J. W. Cell Motil. Cytoskeleton 27, 26–40 (1994).

    Article  CAS  Google Scholar 

  5. Fukui, Y. Int. Rev. Cytol. 144, 85–127 (1993).

    Article  CAS  Google Scholar 

  6. Mabuchi, I. J. Cell Sci. 107, 1853–1862 (1994).

    CAS  PubMed  Google Scholar 

  7. Maupin, P., Phillips, C. L., Adelstein, R. S. & Pollard, T. D. J. Cell Sci. 107, 3077–3090 (1994).

    CAS  PubMed  Google Scholar 

  8. DeBiasio, R. L., LaRocca, G. M., Post, P. L. & Taylor, D. L. Mol. Biol. Cell 7, 1259–1282 (1996).

    Article  CAS  Google Scholar 

  9. Breckler, J. & Burnside, E. Cell Motil. Cytoskeleton 29, 312–320 (1994).

    Article  CAS  Google Scholar 

  10. Field, C. M. & Alberts, B. M. J. Cell Biol. 131, 165–178 (1995).

    Article  CAS  Google Scholar 

  11. Wang, Y. L., Silverman, J. D. & Cao, L. G. J. Cell Biol. 127, 963–971 (1994).

    Article  CAS  Google Scholar 

  12. Cramer, L. P. & Mitchison, T. J. J. Cell Biol. 131, 179–189 (1995).

    Article  CAS  Google Scholar 

  13. Mullins, J. M. & Biesele, J. J. J. Cell Biol 73, 672–684 (1977).

    Article  CAS  Google Scholar 

  14. Rappaport, R. Int. Rev. Cytol. 105, 245–281 (1986).

    Article  CAS  Google Scholar 

  15. Harris, A. K. in Biomechanics of Active Movement and Division of Cells (ed. Akkas, N.) NATO ASI Series Vol. H84, 37–66 (Springer, Berlin, 1994).

    Book  Google Scholar 

  16. White, J. G. & Borisy, G. G. J. Theor. Biol 101, 289–316 (1983).

    Article  CAS  Google Scholar 

  17. Rappaport, R. & Rappaport, B. N. J. Exp. Zool 240, 55–63 (1986).

    Article  Google Scholar 

  18. De Lozanne, A. & Spudich, J. A. Science 236, 1086–1091 (1987).

    Article  CAS  ADS  Google Scholar 

  19. Harris, A. K., Wild, P. & Stopak, D. Science 208, 177–179 (1980).

    Article  CAS  ADS  Google Scholar 

  20. Rappaport, R. Nature 156, 1241–1243 (1967).

    CAS  Google Scholar 

  21. Hiramoto, Y. in Cell Motility: Molecules and Organization (eds Hatano, S., Ishikawa, H. & Sato, H.) 653–663 (Univ. Tokyo Press, 1979).

    Google Scholar 

  22. Fishkind, D. J. & Wang, Y. L. J. Cell Biol. 123, 837–848 (1993).

    Article  CAS  Google Scholar 

  23. Fukui, Y. & Inoué, S. Cell Motil. Cytoskeleton 18, 41–54 (1991).

    Article  CAS  Google Scholar 

  24. Bray, D. & White, J. G. Science 239, 883–888 (1988).

    Article  CAS  ADS  Google Scholar 

  25. Shu, H. B., Li, Z., Palacios, M. J., Li, Q. & Joshi, H. J. Cell Sci. 108, 2955–2962 (1995).

    CAS  PubMed  Google Scholar 

  26. Harris, A. K. Methods Enzymol. 163, 623–642 (1988).

    Article  CAS  Google Scholar 

  27. Harris, A. K. J. Biomech. Eng. 106, 19–24 (1984).

    Article  Google Scholar 

  28. Oliver, T., Dembo, M. & Jacobson, K. Cell Motil. Cytoskeleton 331, 225–240 (1995).

    Article  Google Scholar 

  29. Burton, K. & Taylor, D. L. Mol. Biol. Cell 4, 114a (1993).

    Google Scholar 

  30. Peterson, M. A. Biophys. J. 71, 657–669 (1996).

    Article  CAS  ADS  Google Scholar 

  31. Dembo, M., Oliver, T., Ishihara, A. & Jacobson, K. Biophys. J. 70, 2008–2022 (1996).

    Article  CAS  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burton, K., Taylor, D. Traction forces of cytokinesis measured with optically modified elastic substrata. Nature 385, 450–454 (1997). https://doi.org/10.1038/385450a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/385450a0

  • Springer Nature Limited

This article is cited by

Navigation