Skip to main content

Advertisement

Log in

Structural basis for activation of human lymphocyte kinase Lck upon tyrosine phosphorylation

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

REGULATION through phosphorylation is a characteristic of signalling pathways1,2, and the lymphocyte kinase Lck (p56 lck) both performs phosphorylation and is affected by it. Lck is a Src-family tyrosine kinase expressed in T lymphocytes, where it participates in the cellular immune response 3. Like all Src homologues, it comprises SH3, SH2 and kinase domains. Lck associates through its distinctive ammo-terminal segment with the cytoplasmic tails of either T-cell co-receptor, CD4 or CD8-α 4,5. Activated Lck phosphorylates T-cell receptor ε-chains, which then recruit the ZAP70 kinase to promote T-cell activation 6. Lck is activated by autophosphorylation at Tyr394 in the activation loop 7 and it is inactive when Tyr 505 near the carboxy terminus is phosphorylated and interacts with its own SH2 domain8. Here we report the crystal structure of the Lck tyrosine kinase domain (LCKK) in its activated state at 1.7 Å resolution. The structure reveals how a phosphoryl group at Tyr 394 generates a competent active site. Comparisons with other kinase structures indicate that tyrosine phophophorylation and ligand binding may in general elicit two distinct hinge-like movements between the kinase subdomains. From modelling studies, we suggest a basis for inhibition by phosphorylation at Tyr 505.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fischer, E. H. & Krebs, E. G. J. Biol. Chem. 216, 121–132 (1955).

    CAS  PubMed  Google Scholar 

  2. Johnson, L. N., Noble, M. E. & Owen, D. J. Cell 85, 149–158 (1996).

    Article  CAS  Google Scholar 

  3. Perlmutter, R. M. et al. J. Cell. Biochem. 38, 117–126 (1988).

    Article  CAS  Google Scholar 

  4. Shaw, A. S. et al. Cell 59, 627–636 (1989).

    Article  CAS  Google Scholar 

  5. Turner, J. M. et al. Cell 60, 755–765 (1990).

    Article  CAS  Google Scholar 

  6. Iwashima, M., Irving, B. A., van Oers, N. S., Chan, A. C. & Weiss, A. Science 263, 1136–1139 (1994).

    Article  ADS  CAS  Google Scholar 

  7. Veillette, A. & Fournel, M. Oncogene 5, 1455–1462 (1990).

    CAS  PubMed  Google Scholar 

  8. Veillette, A., Caron, L., Fournel, M. & Pawson, T. Oncogene 7, 971–980 (1992).

    CAS  PubMed  Google Scholar 

  9. Hubbard, S. R., Wei, L., Ellis, L. & Hendrickson, W. A. Nature 372, 746–754 (1994).

    Article  ADS  CAS  Google Scholar 

  10. Knighton, D. R. et al. Science 253, 407–414 (1991).

    Article  ADS  CAS  Google Scholar 

  11. Zheng, J. et al. Protein Sci. 2, 1559–1573 (1993).

    Article  CAS  Google Scholar 

  12. Mohammadi, M., Schlessinger, J. & Hubbard, S. R. Cell 86, 577–587 (1996).

    Article  CAS  Google Scholar 

  13. Russo, A. A., Jeffrey, P. D. & Pavletich, N. P. Nature Struct. Biol. 3, 696–700 (1996).

    Article  CAS  Google Scholar 

  14. Sun, H. & Tonks, N. K. Trends Biochem. Sci. 19, 480–485 (1994).

    Article  CAS  Google Scholar 

  15. Shoji, S., Titani, K., Demaille, J. G. & Fischer, E. H. J. Biol. Chem. 254, 6211–6214 (1979).

    CAS  PubMed  Google Scholar 

  16. Francis, S. H. & Corbin, J. D. Annu. Rev. Physiol. 56, 237–272 (1994).

    Article  CAS  Google Scholar 

  17. Cox, S., Radzio-Andzelm, E. & Taylor, S. S. Curr. Opin. Struct. Biol. 4, 893–901 (1994).

    Article  CAS  Google Scholar 

  18. Goldsmith, E. J. & Cobb, M. H. Curr. Opin. Struct. Biol. 4, 833–840 (1994).

    Article  CAS  Google Scholar 

  19. Cooper, J. A. & Howell, B. Cell 73, 1051–1054 (1993).

    Article  CAS  Google Scholar 

  20. Eck, M. J., Atwell, S. K., Shoelson, S. E. & Harrison, S. C. Nature 368, 764–769 (1994).

    Article  ADS  CAS  Google Scholar 

  21. Russo, A. A., Jeffrey, P. D., Patten, A. K., Massague, J. & Pavletich, N. P. Nature 382, 325–331 (1996).

    Article  ADS  CAS  Google Scholar 

  22. Cantley, L. C. et al. Cell 64, 281–302 (1991).

    Article  CAS  Google Scholar 

  23. CCP4: A Suite of programs for Protein Crystallography (SERC Collaborative Computing Project no. 4, Daresbury Laboratory, Warrington, 1979).

  24. Brünger, A. T. A System for X–ray Crystallography and NMR (Yale Univ. Press, New Haven, CT, 1992).

    Google Scholar 

  25. Hendrickson, W. A. Science 254, 51–58 (1991).

    Article  ADS  CAS  Google Scholar 

  26. Jones, T. A., Zou, J.-Y., Cowan, S. W. & Kjeldgaard, N. Acta Crystallogr. A47, 110–119 (1991).

    Article  CAS  Google Scholar 

  27. Evans, S. V. J. Mol. Graph. 11, 134–138 (1993).

    Article  CAS  Google Scholar 

  28. Nicholls, A., Sharp, K. A. & Honig, B. Proteins 11, 281–296 (1991).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamaguchi, H., Hendrickson, W. Structural basis for activation of human lymphocyte kinase Lck upon tyrosine phosphorylation. Nature 384, 484–489 (1996). https://doi.org/10.1038/384484a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/384484a0

  • Springer Nature Limited

This article is cited by

Navigation