Skip to main content
Log in

Confirmation of iron limitation of phytoplankton photosynthesis in the equatorial Pacific Ocean

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

THE eastern equatorial Pacific Ocean is one of only three open-ocean regions where low phytoplankton chlorophyll biomass persists despite perennially high nitrate and phosphate nutrient concentrations1. In 1993, an area within this region was artificially enriched with a single dose of soluble iron to test whether phytoplankton are physiologically prevented from utilizing the available nutrients by the low natural iron concentrations2,3. Although photosynthesis was stimulated4, the observed lack of a bloom or a significant decrease in nutrient concentrations could not be attributed unequivocally to zooplankton grazing5–7, further iron limitation or secondary nutrient limitation2,4. In 1995, a second iron-enrichment experiment (IronEx II) was conducted in which the same total dosage of iron was added, but over eight days8. A massive phytoplankton bloom developed, significantly reducing surface-water nutrient and CO2 concentrations8–10. Here we report in situ measurements of fluorescence during IronEx II, which show that the iron enrichment triggered biophysical alterations of the phytoplankton's photosynthetic apparatus, resulting in increased photosynthetic capacities throughout the experiment and, hence, the observed bloom. These results unequivocally establish physiological limitation of phytoplankton by iron as the cause of the high-nitrate, low-chlorophyll phenomenon in this ocean region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Martin, J. H. Oceanography 4, 52–55 (1991).

    Article  Google Scholar 

  2. Martin, J. H. et al. Nature 371, 123–129 (1994).

    Article  ADS  CAS  Google Scholar 

  3. Falkowski, P. G. Global Change Biol. 1, 161–163 (1995).

    Article  ADS  Google Scholar 

  4. Kolber, Z. S. et al. Nature 371, 145–149 (1994).

    Article  ADS  CAS  Google Scholar 

  5. Banse, K. Nature 375, 112 (1995).

    Article  ADS  CAS  Google Scholar 

  6. Cullen, J. J. Limnol. Oceanogr. 40, 1336–1343 (1995).

    Article  ADS  CAS  Google Scholar 

  7. Wells, M. L. Nature 368, 295–296 (1994).

    Article  ADS  Google Scholar 

  8. Coale, K. et al. Nature 383, 495–501 (1996).

    Article  ADS  CAS  Google Scholar 

  9. Millero, F. J., Zhu, X. R. & Steinberg, P. A. Eos 76, suppl., abstr. OS42M-01 (1996).

  10. Cooper, D. J., Watson, A. J. & Nightingale, P. D. Nature 383, 511–513 (1996).

    Article  ADS  CAS  Google Scholar 

  11. Kolber, Z. & Falkowski, P. G. Limnol. Oceanogr. 38, 1646–1665 (1993).

    Article  ADS  CAS  Google Scholar 

  12. Falkowski, P. G. & Kolber, Z. Aust. J. Plant Physiol. 22, 341–355 (1995).

    Google Scholar 

  13. Cavender-Bares, K. K., Mann, E. & Chisholm, S. W. Nature (submitted).

  14. Vassiliev, I. R. et al. Plant Physiol. 109, 963–972 (1995).

    Article  CAS  Google Scholar 

  15. Greene, R. M., Geider, R. J. & Falkowski, P. G. Limnol. Oceanogr. 36, 1772–1782 (1991).

    Article  ADS  CAS  Google Scholar 

  16. Greene, R. M., Geider, R. J., Kolber, Z. & Falkowski, P. G. Plant Physiol. 100, 565–575 (1992).

    Article  CAS  Google Scholar 

  17. Banse, K. Limnol. Oceanogr. 35, 772–775 (1990).

    Article  ADS  CAS  Google Scholar 

  18. Frost, B. W. Limnol. Oceanogr. 36, 1616–1630 (1991).

    Article  ADS  Google Scholar 

  19. Banse, K. in Primary Productivity and Biogeochemical Cycles in the Sea (eds Falkowski, P. G. & Woodhead, A. D.) 409–440 (Plenum, New York, 1992).

    Book  Google Scholar 

  20. Falkowski, P. G. Global Change Biol. 1, 161–163 (1995).

    Article  ADS  Google Scholar 

  21. Lehman, J. T. Limnol. Oceanogr. 36, 1546–1554 (1991).

    Article  ADS  CAS  Google Scholar 

  22. Goldman, J. C. in Primary Productivity in the Sea (ed. Falkowski, P. G.) 179–194 (Plenum, New York, 1980).

    Book  Google Scholar 

  23. Kolber, Z. & Falkowski, P. G. Plant Physiol. 88, 72–79 (1988).

    Article  Google Scholar 

  24. Tilman, D., Wedin, D. & Knops, J. Nature 379, 718–720 (1996).

    Article  ADS  CAS  Google Scholar 

  25. Paine, R. T. in Readings in Aquatic Ecology (eds Ford, R. F. & Hazen, W. E.) 276–287 (Saunders, Philadelphia, 1972).

    Google Scholar 

  26. Carpenter, S. R. et al. Science 269, 324–327 (1995).

    Article  ADS  CAS  Google Scholar 

  27. Martin, J. H., Gordon, R. M., Fitzwater, S. & Broenkow, W. W. Deep-Sea Res. 36, 649–680 (1989).

    Article  ADS  CAS  Google Scholar 

  28. Berger, W. H. & Wefer, G. Limnol. Oceanogr. 36, 1899–1918 (1991).

    Article  ADS  CAS  Google Scholar 

  29. Murray, R. W. et al. Global Biogeochem. Cycles 9, 1899–1918 (1991).

    Google Scholar 

  30. Sarmiento, J. L. & Orr, J. C. Limnol. Oceanogr. 36, 1928–1950 (1991).

    Article  ADS  CAS  Google Scholar 

  31. Kumar, N. et al. Nature 378, 675–680 (1995).

    Article  ADS  CAS  Google Scholar 

  32. Aiken, J. & Bellan, I. in Light and Life in the Sea (eds Herring, P. J., Campbell, A. K., Whitfield, M. & Maddock, L.) 39–59 (Cambridge University Press, Cambridge, 1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Behrenfeld, M., Bale, A., Kolber, Z. et al. Confirmation of iron limitation of phytoplankton photosynthesis in the equatorial Pacific Ocean. Nature 383, 508–511 (1996). https://doi.org/10.1038/383508a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/383508a0

  • Springer Nature Limited

This article is cited by

Navigation