Skip to main content
Log in

Contribution of human hippocampal region to novelty detection

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

THE ability to respond to unexpected stimuli (the 'orienting response') is a fundamental characteristic of mammalian behaviour1, but the brain mechanisms by which novelty is detected remain poorly defined. Electrophysiological recordings of scalp and intracranial event-related potentials (ERPs) have shown that novel stimuli activate a distributed network involving prefrontal and posterior association cortex2–6. In addition, ERP7,8 and single-neuron9,10 recordings, as well as neuroimaging11 and modelling12 studies, have suggested that temporal cortical regions, including the hippocampus, are also involved. To examine further the role of the medial temporal lobe in novelty processing, I measured physiological responses to novel auditory and tactile stimuli in patients with damage to the posterior hippocampal region. In normal control subjects, unexpected novel stimuli produce a characteristic ERP signal, accompanied by an autonomic skin response. Both responses are reduced in hippocampal lesion patients, whereas the response to expected control stimuli is unaffected. Thus the hippocampal region, in addition to its known role in memory formation, is an essential component of the distributed limbic–cortical network that detects and responds to novel stimuli.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sokolov, E. N. Annu. Rev. Physiol. 25, 545–580 (1963).

    Article  CAS  Google Scholar 

  2. Knight, R. T. Electroenceph. Clin. Neurophysiol. 59, 9–20 (1984).

    Article  CAS  Google Scholar 

  3. Knight, R. T., Scabini, D., Woods, D. L. & Clayworth, C. C. Brain Res. 502, 109–116 (1989).

    Article  CAS  Google Scholar 

  4. Yamaguchi, S. & Knight, R. T. J. Neurosci. 11, 2039–2054 (1991).

    Article  CAS  Google Scholar 

  5. Halgren, E. et al. Electroenceph. Clin. Neurophysiol. 94, 191–220 (1995).

    Article  CAS  Google Scholar 

  6. Baudena, P., Halgren, E., Heit, G. & Clarke, J. M. Electroencephal. Clin. Neurophysiol. 94, 251–264 (1995).

    Article  CAS  Google Scholar 

  7. Halgren, E. & Marinkovic, K. in The Cognitive Neurosciences (ed. Gazzaniga, M. S.) 1137–1151 (MIT Press, Cambridge, MA, 1995).

    Google Scholar 

  8. Scabini, D. & McCarthy, G. Soc. Neuroscience (abstr.) 19, 564 (1993).

    Google Scholar 

  9. Rolls, E. T., Cahusac, P. M. B., Feigenbaum, J. D. & Miyashita, Y. Exp. Brain Res. 93, 299–306 (1993).

    Article  CAS  Google Scholar 

  10. Miller, E. K., Li, L. & Desimone, R. Science 254, 1377–1380 (1991).

    Article  ADS  CAS  Google Scholar 

  11. Tulving, E., Markowitsch, H. J., Craik, F. I. M., Habib, R. & Houle, S. Cerebral Cortex 6, 71–79 (1996).

    Article  CAS  Google Scholar 

  12. Metcalfe, J. Psychol. Rev. 100, 3–22 (1993).

    Article  CAS  Google Scholar 

  13. Squires, N. K., Squires, K. C. & Hillyard, S. A. Electroenceph. Clin. Neurophysiol. 83, 387–401 (1975).

    Article  Google Scholar 

  14. Courchesne, E., Hillyard, S. A. & Galambos, R. Electroenceph. Clin. Neurophysiol. 39, 131–143 (1975).

    Article  CAS  Google Scholar 

  15. Polich, J. & Squires, L. R. Electroenceph. Clin. Neurophysiol. 86, 408–417 (1993).

    Article  CAS  Google Scholar 

  16. Onofrj, M. et al. Neurology 42, 1762–1767 (1992).

    Article  CAS  Google Scholar 

  17. Treves, A. & Rolls, E. T. Hippocampus 4, 374–391 (1994).

    Article  CAS  Google Scholar 

  18. von Restorff, H. Psychol. Forsch. 18, 299–342 (1933).

    Article  Google Scholar 

  19. Karis, D., Fabiani, M. & Donchin, E. Cogn. Psychol. 16, 177–216 (1984).

    Article  Google Scholar 

  20. Goldman-Rakic, P. S., Selemon, L. D. & Schwartz, M. L. Neuroscience 12, 719–743 (1984).

    Article  CAS  Google Scholar 

  21. Van Hoesen, G. W., Morecraft, R. J. & Semendeferi, K. in Neuropsychiatry (eds Fogel, B. S., Schiffer, R. B. & Rao, S. M.) 113–143 (Williams and Wilkins, Baltimore, 1996).

    Google Scholar 

  22. Friedman, H. R. & Goldman-Rakic, P. S. J. Neurosci. 14, 2775–2788 (1994).

    Article  CAS  Google Scholar 

  23. Risold, P. Y. & Swanson, L. W. Science 272, 1484–1486 (1996).

    Article  ADS  CAS  Google Scholar 

  24. Eichenbaum, H., Otto, T. & Cohen, N. Behav. Brain Sci. 17, 449–518 (1994).

    Article  Google Scholar 

  25. Richardson, B. C., Eberling, J. C., Knight, R. T. & Jagust, W. J. Neurology 42, 170 (1992).

    Article  Google Scholar 

  26. De Renzi, E., Zambolin, A. & Crisi, G. Brain 110, 1099–1116 (1987).

    Article  Google Scholar 

  27. von Cramon, D. Y., Hebel, N. & Schuri, U. Brain 111, 1061–1077 (1988).

    Article  Google Scholar 

  28. Woods, D. L., Knight, R. T. & Scabini, D. Cogn. Brain Res. 1, 227–240 (1993).

    Article  CAS  Google Scholar 

  29. Renault, B., Ragot, R., Lesevre, N. & Remond A. Science 215, 1413–1415 (1982).

    Article  ADS  CAS  Google Scholar 

  30. Gutrecht, J. A. J. Clin. Neurophysiol. 11, 519–524 (1994).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Knight, R. Contribution of human hippocampal region to novelty detection. Nature 383, 256–259 (1996). https://doi.org/10.1038/383256a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/383256a0

  • Springer Nature Limited

This article is cited by

Navigation