Skip to main content
Log in

A slow earthquake sequence on the San Andreas fault

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

EARTHQUAKES typically release stored strain energy on timescales of the order of seconds, limited by the velocity of sound in rock. Over the past 20 years, observations1–13 and laboratory experiments14 have indicated that rupture can also occur more slowly, with durations up to hours. Such events may be important in earthquake nucleation15 and in accounting for the excess of plate convergence over seismic slip in subduction zones. The detection of events with larger timescales requires near-field deformation measurements. In December 1992, two borehole strainmeters close to the San Andreas fault in California recorded a slow strain event of about a week in duration, and we show here that the strain changes were produced by a slow earthquake sequence (equivalent magnitude 4.8) with complexity similar to that of regular earthquakes. The largest earthquakes associated with these slow events were small (local magnitude 3.7) and contributed negligible strain release. The importance of slow earthquakes in the seismogenic process remains an open question, but these observations extend the observed timescale for slow events by two orders of magnitude.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kanamori, H. & Cipar, J. Phys. Earth Planet. Int. 9, 127–136 (1974).

    Article  ADS  Google Scholar 

  2. Kanamori, H. & Anderson, D. L. J. Geophys. Res. 80, 1075–1078 (1975).

    Article  ADS  Google Scholar 

  3. Cifuentes, I. L. & Silver, P. G. J. Geophys. Res. 94, 643–663 (1989).

    Article  ADS  Google Scholar 

  4. Linde, A. T. & Silver, P. G. Geophys. Res. Lett. 16, 1305–1308 (1989).

    Article  ADS  Google Scholar 

  5. Sacks, I. S., Suyehiro, S., Linde, A, T. & Snoke, J. A. Nature 275, 599–602 (1978).

    Article  ADS  Google Scholar 

  6. Sacks, I. S., Linde, A. T., Snoke, J. A. & Suyehiro, S. Earthquake Prediction: An International Review Maurice Ewing Ser. Vol. 4 (eds Simpson, B. W. & Richards, P. G.) 617–628 (AGU, Washington DC, 1981).

    Google Scholar 

  7. Sacks, I. S., Linde, A. T., Snoke, J. A. & Suyehiro, S. Tectonophys. 81, 311–318 (1982).

    Article  Google Scholar 

  8. Beroza, G. C. & Jordan, T. H. J. Geophys. Res. 95, 2485–2510 (1990).

    Article  ADS  Google Scholar 

  9. Ihmle, P. F. & Jordan, T. H. Science 266, 1547–1551 (1994).

    Article  ADS  CAS  Google Scholar 

  10. Satake, K. & Kanamori, H. J. Geophys. Res. 82, 5692–5697 (1977).

    Article  Google Scholar 

  11. Kanamori, H. & Kikuchi, M. Nature 361, 714–716 (1993).

    Article  ADS  Google Scholar 

  12. Kawasaki, I. et al. J. Phys. Earth 43, 105–116 (1995).

    Article  Google Scholar 

  13. Gladwin, M. T., Gwyther, R. L., Hart, R. H. G. & Breckenridge, K. J. Geophys. Res. 99, 4559–4565 (1994).

    Article  ADS  Google Scholar 

  14. Kato, K., Kusunose, K., Yamamoto, K. & Hirasawa, T. J. Phys. Earth 39, 461–476 (1991).

    Article  Google Scholar 

  15. Dieterich, J. H. & Kilgore, B. D. Proc. Natl Acad. Sci. USA 93, 3787–3794 (1996).

    Article  ADS  CAS  Google Scholar 

  16. Sacks, I. S., Suyehiro, S., Evertson, D. W. & Yamagishi, Y. Pap. Meteorol. Geophys. 22, 195–207 (1971).

    Article  Google Scholar 

  17. Gladwin, M. T. Rev. Sci. Instrum. 55, 2011–2016 (1984).

    Article  ADS  Google Scholar 

  18. Silverman, S., Mortensen, C. & Johnston, M. J. S. Bull. Seismol. Soc. Am. 79, 189–198 (1989).

    Google Scholar 

  19. Behr, J., Bilham, R., Bodin, P., Burford, R. O. & Burgmann, R. Geophys. Res. Lett. 17, 1445–1448 (1990).

    Article  ADS  Google Scholar 

  20. Duffield, W. A. & Burford, R. O. J. Res. U. S. Geol. Surv. 1, 569–577 (1973).

    Google Scholar 

  21. Ishiguro, M., Sato, T., Tamura, Y. & Ooe, M. Proc. Inst. of Stat. Math. 32, 71–85 (1984).

    Google Scholar 

  22. Sato, T. & Hanada, H. Publ. Int. Latitude Observ., Mizusawa 18, 29–47 (1984).

    Google Scholar 

  23. Johnston, M. J. S., McHugh, S. & Burford, R. O. Nature 260, 691–693 (1976).

    Article  ADS  Google Scholar 

  24. Goulty, N. R. & Gilman, R. J. Geophys. Res. 83, 5415–5419 (1978).

    Article  ADS  Google Scholar 

  25. Ruina, A. J. Geophys. Res. 88, 10359–10370 (1983).

    Article  ADS  Google Scholar 

  26. Okada, Y. Bull. Seismol. Soc. Am. 82, 1018–1040 (1992).

    Google Scholar 

  27. Bodin, P. & Bilham, R. U. S. Gol. Survey Prof. Pap. (1550-F) 91–101 (1994).

    Google Scholar 

  28. Jaume, S. C. & Sykes, L. R. J. Geophys. Res. 101, 765–789 (1996).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Linde, A., Gladwin, M., Johnston, M. et al. A slow earthquake sequence on the San Andreas fault. Nature 383, 65–68 (1996). https://doi.org/10.1038/383065a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/383065a0

  • Springer Nature Limited

This article is cited by

Navigation