Skip to main content
Log in

Effects of gamete traits on fertilization in the sea and the evolution of sexual dimorphism

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

THE evolution of egg and sperm1,2, and more derived forms of sexual dimorphism, is thought to be driven by sperm competition and postzygotic survival; males are limited by fertilizations, females by resources3. Evidence of sperm competition comes from internal fertilizers, or cases where sperm are deposited on eggs4, but in free-spawners, the ancestral mating strategy (refs 1,5 but see ref. 6), females are often sperm limited7,8. Laboratory experiments on sea urchins demonstrate that intraspecific differences in gamete attributes, such as egg size, can influence rates of fertilization. Field experiments in which gametes are released and recaptured demonstrate that the influence of gamete traits on fertilization is not overwhelmed by sea conditions, and that variation in gamete traits can have important fitness consequences. These results suggest a new mechanism for the evolution of anisogamy and sexual dimorphism, in which sperm limitation is important, and natural selection for enhanced fertilization acts on females as well as males.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Parker, G. A. in Sperm Competition and the Evolution of Animal Mating Systems (ed. Smith, R. L.) 1–59 (Academic, New York, 1984).

    Book  Google Scholar 

  2. Maynard Smith, J. & Szathmary, E. The Major Transitions in Evolution (W. H. Freeman, Oxford, 1995).

    Google Scholar 

  3. Bateman, A. J. Heredity 2, 349–368 (1948).

    Article  CAS  Google Scholar 

  4. Arnold, S. J. Am. Nat. 144, S126–S149 (1994).

    Article  Google Scholar 

  5. Wray, G. A. in Ecology of Marine Invertebrate Larvae (ed. McEdward, L.) 412–448 (CRC, Boca Raton, FL, 1995).

    Google Scholar 

  6. Rouse, R. & Fitzhugh, K. Zool. Scripta 23, 271–312 (1994).

    Article  Google Scholar 

  7. Levitan, D. R. in Ecology of Marine Invertebrate Larvae (ed. McEdward, L.) 123–156 (CRC, Boca Raton, FL, 1995).

    Google Scholar 

  8. Levitan, D. R. & Petersen, C. Trends Ecol. Evol. 10, 228–231 (1995).

    Article  CAS  Google Scholar 

  9. Levitan, D. R. Am. Nat. 141, 517–536 (1993).

    Article  CAS  Google Scholar 

  10. Benzie, J. A. H. & Dixie, P. Biol. Bull. 186, 153–167 (1994).

    Article  CAS  Google Scholar 

  11. Denny, M. W. & Shibata, M. F. Am. Nat. 134, 859–889 (1989).

    Article  Google Scholar 

  12. Vance, R. R. Am. Nat. 107, 339–352 (1973).

    Article  Google Scholar 

  13. Smith, C. C. & Fretwell, S. D. Am. Nat. 108, 499–506 (1974).

    Article  Google Scholar 

  14. Levitan, D. R. Am. Nat. 148, 174–188 (1996).

    Article  Google Scholar 

  15. Scudo, F. M. Evolution 21, 285–291 (1967).

    Article  Google Scholar 

  16. Vogel, H., Czihak, G., Chang, P. & Wolf, W. Math. Biosci. 58, 189–216 (1982).

    Article  Google Scholar 

  17. Mundy, C. N. et al. Biol. Bull. 186, 168–171 (1994).

    Article  CAS  Google Scholar 

  18. Rumrill, S. S. Ophelia 32, 163–198 (1990).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Levitan, D. Effects of gamete traits on fertilization in the sea and the evolution of sexual dimorphism. Nature 382, 153–155 (1996). https://doi.org/10.1038/382153a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/382153a0

  • Springer Nature Limited

This article is cited by

Navigation