Skip to main content

Advertisement

Log in

Geochemistry of mantle–core differentiation at high pressure

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

THE apparent excess of siderophile (iron-Ioving) elements in the Earth's mantle has been a long-standing enigma in the geochemistry of mantle–core differentiation1,2. Although current models have proved successful in explaining some aspects of this problem3–7, important questions remain. In particular, the mantle's near-chondritic ratio of nickel to cobalt (close to that expected for the material from which the Earth formed) is hard to explain, given the markedly different ambient-pressure partitioning behaviour of these elements between iron-alloy and silicate melts3–8. Here we report experimental results which show that both elements become less siderophile with pressure, but the effect is much more pronounced for Ni, so that the partition coefficients of the two elements become essentially equivalent at an extrapolated pressure of ∼28 GPa. The absolute and relative abundances of Ni and Co in the mantle are therefore consistent with alloy–silicate chemical equilibrium at high pressure, indicating that core formation may have taken place in a magma ocean with a depth of 750–1,100 km. We also find that, unlike Ni and Co, sulphur becomes more siderophile with pressure. Sulphur's increased affinity for iron with depth could make it the dominant light element in the Earth's core.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ringwood, A. E. Geochim. cosmochim. Acta 30, 41–104 (1966).

    Article  ADS  CAS  Google Scholar 

  2. Jagoutz, E. et al. Proc. Lunar planet. Sci. Conf. 10, 2031–2050 (1979).

    ADS  Google Scholar 

  3. Wänke, H. Phil. Trans. R. Soc. Lond. A 303, 287 (1981).

    Article  ADS  Google Scholar 

  4. Brett, R. Geochim. cosmochim. Acta 48, 1183–1188 (1984).

    Article  ADS  CAS  Google Scholar 

  5. Jones, J. H. & Drake, M. J. Nature 322, 221–228 (1986).

    Article  ADS  CAS  Google Scholar 

  6. Newsom, H. E. in Origin of the Earth (eds Newsom, H. E. & Jones, J. H.) 273–288 (Oxford Univ. Press, New York, 1989).

    Google Scholar 

  7. Murthy, R. V. Science 253, 303–306 (1991).

    Article  ADS  CAS  Google Scholar 

  8. Schmitt, W., Palme, H. & Wänke, H. Geochim. cosmochim. Acta 53, 173–185 (1989).

    Article  ADS  CAS  Google Scholar 

  9. Brett, R. Geochim. cosmochim. Acta 35, 203–221 (1971).

    Article  ADS  CAS  Google Scholar 

  10. Walker, D., Norby, L. & Jones, J. H. Science 262, 1858–1860 (1994).

    Article  ADS  Google Scholar 

  11. Hillgren, V. J., Drake, M. J. & Rubie, D. C. Science 264, 1442–1445 (1994).

    Article  ADS  CAS  Google Scholar 

  12. Thibault, Y. & Walter, M. J. Geochim. Cosmochim. Acta 59, 991–1002 (1995).

    Article  ADS  CAS  Google Scholar 

  13. Agee, C. B. et al. J. geophys. Res. 100, 17725–17740 (1995).

    Article  ADS  CAS  Google Scholar 

  14. Drake, M. J., Newsom, H. E. & Capobianco, C. J. Geochim. cosmochim. Acta 53, 2101–2111 (1989).

    Article  ADS  CAS  Google Scholar 

  15. Capobianco, C. J. & Amelin, A. A. Geochim. cosmochim. Acta 58, 125–140 (1994).

    Article  ADS  CAS  Google Scholar 

  16. Dingwell, D. B., O'Neill, H. St C., Ertel, W. & Spettel, B. Geochim. cosmochim. Acta 58, 1967–1974 (1994).

    Article  ADS  CAS  Google Scholar 

  17. Holzheid, J. R., Borisov, A. & Palme, H. Geochim. cosmochim. Acta 58, 1975–1981 (1994).

    Article  ADS  CAS  Google Scholar 

  18. Arculus, R. A. Rev. Earth planet. Sci. 13, 75–95 (1985).

    Article  ADS  CAS  Google Scholar 

  19. Peach, C. L. & Mathez, E. A. Geochim. cosmochim. Acta 57, 3013–3031 (1993).

    Article  ADS  CAS  Google Scholar 

  20. O'Neill, H. St C. Science 257, 1281–1285 (1992).

    Article  ADS  Google Scholar 

  21. Jana, D. & Walker, D. V. M. Goldschimdt Conf. Program and Abstracts 58 (Geochemical Soc., 1995).

    Google Scholar 

  22. McDonough, M. F. & Sun, S.-s. Chem. Geol. 120, 223–253 (1995).

    Article  ADS  CAS  Google Scholar 

  23. Zhang, J. Z. & Herzberg, C. J. geophys. Res. 99, 17729–17742 (1994).

    Article  ADS  Google Scholar 

  24. Kaula, W. M. J. geophys. Res. 84, 999–1008 (1979).

    Article  ADS  Google Scholar 

  25. Stevenson, D. J. in Origin of the Earth (eds Newsom, H. E. & Jones, J. H.) 231–249 (Oxford Univ. Press, New York, 1989).

    Google Scholar 

  26. Tonks, W. B. & Melosh, H. J. in Origin of the Earth (eds Newsom, H. E. & Jones, J. H.) 151–174 (Oxford Univ. Press, New York, 1989).

    Google Scholar 

  27. Agee, C. B. & Walker, D. Earth planet. Sci. Lett. 90, 144–156 (1988).

    Google Scholar 

  28. Lorand, J. P. Geochim. Cosmochim. Acta 54, 1487–1492 (1990).

    Article  ADS  CAS  Google Scholar 

  29. Stosch, H-G. Contr. Miner. Petrol. 78, 166–174 (1981).

    Article  ADS  CAS  Google Scholar 

  30. Sharma, R. C. & Chang, Y. A. Metall. Trans. B10, 103–108 (1979).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, J., Agee, C. Geochemistry of mantle–core differentiation at high pressure. Nature 381, 686–689 (1996). https://doi.org/10.1038/381686a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/381686a0

  • Springer Nature Limited

This article is cited by

Navigation