Skip to main content
Log in

Structure of mitochondrial creatine kinase

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

CREATINE kinase (CK; EC 2.7.3.2), an enzyme important for energy metabolism in cells of high and fluctuating energy requirements, catalyses the reversible transfer of a phosphoryl goup from phosphocreatine to ADP1–3. We have solved the structure of the octameric mitochondrial isoform, Mib-CK, which is located in the intermembrane compartment and along the cristae membranes. Mib-CK consumes ATP produced in the mitochondria for the production of phosphocreatine, which is then exported into the cytosol for fast regeneration of ATP by the eytosolic CK isoforms. The octamer has 422 point-group symmetry, and appears as a cube of side length 93 Å with a channel 20 Å wide extending along the four-fold axis. Positively charged amino acids at the four-fold faces of the octamer possibly interact with negatively charged mitochondrial membranes. Each monomer consists of a small α-helical domain and a large domain containing an eight-stranded antiparallel β-sheet flanked by seven α-helices. The conserved residues of the CK family form a compact cluster that covers the active site between the domains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Watts, D. C. The Enzymes 3rd edn (ed. Boyer, P. D.) 383–455 (Academic, New York, 1973).

    Google Scholar 

  2. Kenyon, G. L. & Reed, G. H. Adv. Enzymol. 54, 367–426 (1983).

    CAS  PubMed  Google Scholar 

  3. Wallimann, T., Wyss, M., Brdiczka, D., Nicolay, K. & Eppenberger, H. M. Biochem. J. 281, 21–40 (1992).

    Article  CAS  Google Scholar 

  4. Hossle, J. P. et al. Biochem. biophys. Res. Commun. 151, 408–416 (1988).

    Article  CAS  Google Scholar 

  5. Mühlebach, S. M. et al. Molec. cell. Biochem. 133/134, 245–263 (1994).

    Article  Google Scholar 

  6. Taylor, S. S. & Radzio-Andzelm, E. Structure 2, 345–355 (1994).

    Article  CAS  Google Scholar 

  7. Wyss, M., James, P., Schlegel, J. & Wallimann, T. Biochemistry 32, 10727–10735 (1993).

    Article  CAS  Google Scholar 

  8. Olcott, M. C., Bradley, M. L. & Haley, B. E. Biochemistry 33, 11935–11941 (1994).

    Article  CAS  Google Scholar 

  9. Buechter, D. D., Medzihradszky, K. F., Burlingame, A. L. & Kenyon, G. L. J. biol. Chem. 267, 2173–2178 (1992).

    CAS  PubMed  Google Scholar 

  10. Taylor, J. S., Leigh, J. S. & Cohn, M. Proc. natn. Acad. Sci. U.S.A. 64, 219–226 (1969).

    Article  ADS  CAS  Google Scholar 

  11. Cook, P. F., Kenyon, G. L. & Cleland, W. W. Biochemistry 20, 1204–1210 (1981).

    Article  CAS  Google Scholar 

  12. James, P., Wyss, M., Lutsenko, S., Wallimann, T. & Carafoli, E. FEBS Lett. 273, 139–143 (1990).

    Article  CAS  Google Scholar 

  13. Rosevear, P. R., Desmeules, P., Kenyon, G. L. & Mildvan, A. S. Biochemistry 20, 6155–6164 (1981).

    Article  CAS  Google Scholar 

  14. Vašák, M., Nagayama, K., Wüthrich, K., Mertens, M. L. & Kägi, J. H. R. Biochemistry 18, 5050–5055 (1979).

    Article  Google Scholar 

  15. Gross, M., Furter-Graves, E. M., Wallimann, T., Eppenberger, H. M. & Furter, R. Protein Sci. 3, 1058–1068 (1994).

    Article  CAS  Google Scholar 

  16. Schlegel, J. et al. J. biol. Chem. 263, 16942–16953 (1988).

    CAS  PubMed  Google Scholar 

  17. Gross, M. & Wallimann, T. Biochemistry 34, 6660–6667 (1995).

    Article  CAS  Google Scholar 

  18. Milner-White, E. J. & Watts, D. C. Biochem. J. 122, 727–740 (1971).

    Article  CAS  Google Scholar 

  19. Schnyder, T., Engel, A., Lustig, A. & Wallimann, T. J. biol. Chem. 263, 16954–16962 (1988).

    CAS  PubMed  Google Scholar 

  20. Kaldis, P., Furter, R. & Wallimann, T. Biochemistry 33, 952–959 (1994).

    Article  CAS  Google Scholar 

  21. Schnyder, T., Cyrklaff, M., Fuchs, K. & Wallimann, T. J. struct. Biol. 112, 136–147 (1994).

    Article  CAS  Google Scholar 

  22. Schnyder, T., Gross, H., Winkler, H., Eppenberger, H. M. & Wallimann, T. J. Cell Biol. 112, 95–101 (1991).

    Article  CAS  Google Scholar 

  23. Rojo, M., Hovius, R., Demel, R. A., Nicolay, K. & Wallimann, T. J. biol. Chem. 266, 20290–20295 (1991).

    CAS  PubMed  Google Scholar 

  24. Wallimann, T., Schlösser, T. & Eppenberger, H. M. J. biol. Chem. 259, 5238–5246 (1984).

    CAS  PubMed  Google Scholar 

  25. Schnyder, T., Winkler, H., Gross, H., Eppenberger, H. M. & Wallimann, T. J. biol. Chem. 266, 5318–5322 (1991).

    CAS  PubMed  Google Scholar 

  26. Schnyder, T., Sargent, D. F., Richmond, T. J., Eppenberger, H. M. & Wallimann, T. J. molec. Biol. 216, 809–812 (1990).

    Article  CAS  Google Scholar 

  27. Kabsch, W. J. appl. Crystallogr. 26, 795–800 (1993).

    Article  CAS  Google Scholar 

  28. Brünger, A. T. X-PLOR Version 3.1 (Yale University, New Haven, CT, 1992).

    Google Scholar 

  29. Jones, T. A., Zou, J. Y., Cowan, S. W. & Kjeldgaard, M. Acta crystallogr. A47, 110–119 (1991).

    Article  Google Scholar 

  30. Kabsch, W. & Sander, C. Biopolymers 22, 2577–2637 (1983).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fritz-Wolf, K., Schnyder, T., Wallimann, T. et al. Structure of mitochondrial creatine kinase. Nature 381, 341–345 (1996). https://doi.org/10.1038/381341a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/381341a0

  • Springer Nature Limited

This article is cited by

Navigation