Skip to main content
Log in

Orbital migration of the planetary companion of 51 Pegasi to its present location

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

THE recent discovery1 and confirmation2 of a possible planetary companion orbiting the solar-type star 51 Pegasi represent a breakthrough in the search for extrasolar planetary systems. Analysis of systematic variations in the velocity of the star indicate that the mass of the companion is approximately that of Jupiter, and that it is travelling in a nearly circular orbit at a distance from the star of 0.05 AU (about seven stellar radii). Here we show that, if the companion is indeed a gas-giant planet, it is extremely unlikely to have formed at its present location. We suggest instead that the planet probably formed by gradual accretion of solids and capture of gas at a much larger distance from the star (∼5 AU), and that it subsequently migrated inwards through interactions with the remnants of the circumstellar disk. The planet's migration may have stopped in its present orbit as a result of tidal interactions with the star, or through truncation of the inner circumstellar disk by the stellar magnetosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mayor, F. & Queloz, D. Nature 378, 355–359 (1995).

    Article  ADS  CAS  Google Scholar 

  2. Marcy, G. & Butler, R. P. IAU Circ. No. 6251 (1995).

  3. Lin, D. N. C. & Papaloizou, J. in Protostars and Planets II (eds Black, D. C. & Matthews, M. S.) 981–1072 (Univ. Arizona Press, Tucson, 1985).

    Google Scholar 

  4. Beckwith, S. V. W., Sargent, A. I., Chini, R. & Güsten, R. Ast J. 99, 924–945 (1990).

    Article  ADS  Google Scholar 

  5. Wetherill, G. W. A. Rev. Astr. Astrophys. 18, 77–113 (1980).

    Article  ADS  CAS  Google Scholar 

  6. Bodenheimer, P. & Pollack, J. B. Icarus 67, 391–408 (1986).

    Article  ADS  Google Scholar 

  7. Cameron, A. G. W. Moon Planets 18, 5–40 (1978).

    Article  ADS  Google Scholar 

  8. Laughlin, G. & Bodenheimer, P. Astrophys. J. 436, 335–354 (1994).

    Article  ADS  Google Scholar 

  9. Laughlin, G. & Bodenheimer, P. Astrophys. J. 403, 303–314 (1993).

    Article  ADS  Google Scholar 

  10. Stringfellow, G., Black, D. C. & Bodenheimer, P. Astrophys. J. 349, L59–L62 (1990).

    Article  ADS  Google Scholar 

  11. Saumon, D., Chabrier, G. & Van Horn, H. M. Astrophys. J. Suppl. Ser. 99, 713–741 (1995).

    Article  ADS  CAS  Google Scholar 

  12. Goldreich, P. & Soter, S. Icarus 5, 375–389 (1966).

    Article  ADS  Google Scholar 

  13. Shu, F. H. The Physical Universe 441 (University Science Books, Mill Valley, CA, 1982).

    Google Scholar 

  14. Zahnle, K. in Protostars and Planets III (eds Levy, E. & Lunine, J.) 1305–1338 (Univ. Arizona Press, Tucson, 1993).

    Google Scholar 

  15. Burrows, A. & Lunine, J. Nature 378, 333 (1995).

    Article  ADS  CAS  Google Scholar 

  16. Pollack, J. B. et al. Icarus (submitted).

  17. Lin, D. N. C. & Papaloizou, J. C. B. Mon. Not. R. astr. Soc. 186, 799–812 (1979).

    Article  ADS  Google Scholar 

  18. Papaloizou, J. C. B. & Lin, D. N. C. Astrophys. J. 285, 818–834 (1984).

    Article  ADS  Google Scholar 

  19. Lin, D. N. C. & Papaloizou, J. C. B. in Protostars and Planets III (eds Levy, E. & Lunine, J.) 749–836 (Univ. Arizona Press, Tucson, 1993).

    Google Scholar 

  20. Strom, S. E., Edwards, S. & Skrutskie, M. F. in Protostars and Planets III (eds Levy, E. & Lunine, J.) 837–866 (Univ. Arizona Press, Tucson, 1993).

    Google Scholar 

  21. Goldreich, P. & Tremaine, S. Astrophys. J. 241, 425–441 (1980).

    Article  ADS  MathSciNet  Google Scholar 

  22. Lin, D. N. C. & Papaloizou, J. C. B. Astrophys. J. 309, 846–857 (1986).

    Article  ADS  Google Scholar 

  23. Takeuchi, T., Miyama, S. & Lin, D. N. C. Astrophys. J. (in the press).

  24. Mathieu, R. D. A. Rev. Astr. Astrophys. 32, 465–530 (1994).

    Article  ADS  Google Scholar 

  25. Skumanich, A. Astrophys. J. 171, 565–567 (1972).

    Article  ADS  CAS  Google Scholar 

  26. D'Antona, F. & Mazzitelli, I. Astrophys. J. Suppl. Ser. 90, 467–500 (1994).

    Article  ADS  CAS  Google Scholar 

  27. Bouvier, J., Cabrit, S., Fernandez, M., Martin, E. L. & Matthews, J. M. Ast. Astrophys. 272, 176–206.

  28. Königl, A. Astrophys. J. 370, L39–L43 (1991).

    Article  ADS  Google Scholar 

  29. Shu, F. H. et al. Astrophys. J. 429, 781–796 (1994).

    Article  ADS  Google Scholar 

  30. Goldreich, P. & Tremaine, S. Astrophys. J. 233, 857–871 (1979).

    Article  ADS  MathSciNet  Google Scholar 

  31. MacGregor, K. & Bremner, M. Astrophys. J. 376, 204–213 (1991).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, D., Bodenheimer, P. & Richardson, D. Orbital migration of the planetary companion of 51 Pegasi to its present location. Nature 380, 606–607 (1996). https://doi.org/10.1038/380606a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/380606a0

  • Springer Nature Limited

This article is cited by

Navigation