Skip to main content
Log in

Influence of mountain ranges on the mid-latitude atmospheric response to El Niño events

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

TROPICAL heating associated with El Niño events influences weather patterns around the globe1–4, in part by generating wave-like disturbances of vorticity (a measure of local fluid circulation about the vertical) in the upper troposphere which extend into the mid-latitude regions. But these waves do not account well for the observed mid-latitude consequences of E1 Niño5–8 events. Here we show that a secondary interaction of these waves with mid-latitude mountains contributes significantly to the observed flow patterns. On encountering a mountain, a column of rotating air is compressed vertically, spreads horizontally, and its net vorticity is thereby reduced. For a realistic distribution of E1 Niño-related tropical heating, we find that vortex compression, primarily in the Himalayan–Tibetan region, generates a vorticity contribution at mid-latitudes with an amplitude up to one-half that of the directly propagating wave-train. Mountains therefore play a significant role in determining the structure of the extratropical response to E1 Niño.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bjerknes, J. Mon. Weath. Rev. 97, 163–172 (1969).

    Article  ADS  Google Scholar 

  2. Ropelewski, C. F. & Halpert, M. S. Mon. Weath. Rev. 115, 1606–1629 (1987).

    Article  ADS  Google Scholar 

  3. Hoskins, B. J. & Karoly, D. J. J. atmos. Sci. 38, 1179–1196 (1981).

    Article  ADS  Google Scholar 

  4. Lau, N.-C. Mon. Weath. Rev. 113, 1970–1996 (1985).

    Article  ADS  Google Scholar 

  5. Geisler, J. E., Blackmon, M. L., Bates, G. T. & Munoz, S. J. atmos. Sci. 42, 865–883 (1985).

    Article  Google Scholar 

  6. Held, I. M. & Kang, I.-S. J. atmos. Sci. 44, 3576–3586 (1987).

    Article  ADS  Google Scholar 

  7. Kok, C. J. & Opsteegh, J. D. J. atmos. Sci. 42, 677–694 (1985).

    Article  ADS  Google Scholar 

  8. Held, I. M., Lyons, S. W. & Nigam, S. J. atmos. Sci. 46, 163–174 (1989).

    Article  ADS  Google Scholar 

  9. Holton, J. R. An Introduction to Dynamic Meteorology (Academic, New York, 1992).

    Google Scholar 

  10. Sardeshmukh, P. D. & Hoskins, B. J. Q. J. R. met. Soc. 113, 339–360 (1987).

    Article  ADS  Google Scholar 

  11. Schneider, E. K. Pure appl. Geophys. 126, 137–140 (1988).

    Article  ADS  Google Scholar 

  12. Held, I. M. in Large-Scale Dynamical Processes in the Atmosphere (eds Hoskins, B. J. & Pearce, R. P.) 127–168 (Academic, New York, 1983).

    Google Scholar 

  13. Hoskins, B. J. & Ambrizzi, T. J. atmos. Sci. 50, 1661–1671 (1993).

    Article  ADS  Google Scholar 

  14. Simmons, A. J., Wallace, J. M. & Branstator, G. J. atmos. Sci. 40, 1363–1392 (1983).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

DeWeaver, E., Nigam, S. Influence of mountain ranges on the mid-latitude atmospheric response to El Niño events. Nature 378, 706–708 (1995). https://doi.org/10.1038/378706a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/378706a0

  • Springer Nature Limited

This article is cited by

Navigation