Skip to main content
Log in

A phosphate transporter from the mycorrhizal fungus Glomus versiforme

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

VESICULAR-arbuscular (VA) mycorrhizal fungi form symbiotic associations with the roots of most terrestrial plants, including many agriculturally important crop species1–3. The fungi colonize the cortex of the root to obtain carbon from their plant host, while assisting the plant with the uptake of phosphate and other mineral nutrients from the soil2–5. This association is beneficial to the plant, because phosphate is essential for plant growth and development, especially during growth under nutrient-limiting conditions2,6–8. Molecular genetic studies of these fungi and their interaction with plants have been limited owing to the obligate symbiotic nature of the VA fungi, so the molecular mechanisms underlying fungal-mediated uptake and translocation of phosphate from the soil to the plant remain unknown. Here we begin to investigate this process by identifying a complementary DNA that encodes a trans-membrane phosphate transporter (GvPT) from Glomus versiforme, a VA mycorrhizal fungus. The function of the protein encoded by GvPT was confirmed by complementation of a yeast phosphate transport mutant. Expression of GvPT was localized to the external hyphae of G. versiforme during mycorrhizal associations, these being the initial site of phosphate uptake from the soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Harley, J. L. & Smith, S. E. Mycorrhizal Symposis, (Academic, London. 1983).

    Google Scholar 

  2. Jeffries, P. Crit. Rev. Biotechnol. 5, 319–357 (1987).

    Article  Google Scholar 

  3. Smith, S. E. & Gianinazzi-Pearson, V. A. Rev. Pl. Physiol. Pl. molec. Biol. 39, 221–244 (1988).

    Article  CAS  Google Scholar 

  4. Sanders, F. E. & Tinker, P. B. Nature 233, 278–279 (1971).

    Article  ADS  CAS  Google Scholar 

  5. Pearson, J. N. & Jakobsen, I. New Phytol. 124, 489–494 (1993).

    Article  CAS  Google Scholar 

  6. Smith, S. E. Biol. Rev. 55, 475–510 (1980).

    Article  CAS  Google Scholar 

  7. Bethlenfalvay, G. W. Am. Soc. Agron. Spec. Publ. 54, 1–27 (1992).

    Google Scholar 

  8. Pfleger, F. L. & Linderman, R. G. Mycorrhizae and Plant Health (APS Symposium series, St Paul, MN. 1994).

    Google Scholar 

  9. Bun-ya, M., Nishimura, M., Harashima, S. & Oshima, Y. Molec. cell. Biol. 11, 3229–3238 (1991).

    Article  CAS  Google Scholar 

  10. Eisenberg, D., Schwarz, E., Komaromy, M. & Wall, R. J. molec. Biol. 179, 125–142 (1984).

    Article  CAS  Google Scholar 

  11. Griffith, J. K., Baker, M. E., Duncan, R. A., Page, M. G. P. & Skurrar, R. A. Curr. Opin. Cell Biol. 4, 684–695 (1992).

    Article  CAS  Google Scholar 

  12. Marger, M. D. & Saier, M. H. Jr, Trends biochem. Sci. 18, 13–20 (1993).

    Article  ADS  CAS  Google Scholar 

  13. Mann, B. J., Bowman, B. J., Grotelueschen, J. & Metzenberg, R. L. Gene 83, 281–289 (1989).

    Article  CAS  Google Scholar 

  14. Versaw, W. K. Gene 153, 135–139 (1995).

    Article  CAS  Google Scholar 

  15. Lawrence, J. C. Jr, Hiken, J. F. & James, D. E. J. biol. Chem. 265, 2324–2332 (1990).

    CAS  PubMed  Google Scholar 

  16. Ammerer, G. Meth. Enzym. 101, 192–201 (1983).

    Article  CAS  Google Scholar 

  17. Toh-E, A. & Oshima, Y. J. Bact. 120, 608–617 (1974).

    CAS  PubMed  Google Scholar 

  18. Berhe, A., Fristedt, U. & Persson, B. L. Eur. J. Biochem. 227, 566–572 (1995).

    Article  CAS  Google Scholar 

  19. Brady, J. F. & Ishizaki, H. Comput. Meth. Program. Biomed. 28, 271–272 (1989).

    Article  CAS  Google Scholar 

  20. Eisenthal, R. & Cornish-Bowden, A. Biochem. J. 139, 715–720 (1974).

    Article  CAS  Google Scholar 

  21. Beever, R. E. & Burns, D. J. W. Adv. bot. Res. 8, 127–219 (1980).

    Article  CAS  Google Scholar 

  22. Thomson, B. D., Clarkson, D. T. & Brain, P. New Phytol. 116, 647–653 (1990).

    Article  CAS  Google Scholar 

  23. Simon, L., Lalonde, M. & Bruns, T. D. Appl. envir. Microbiol. 58, 291–295 (1992).

    CAS  Google Scholar 

  24. Smith, S. E. & Smith, F. A. New Phytol. 114, 1–38 (1990).

    Article  CAS  Google Scholar 

  25. Jakobsen, I., Abbott, L. K. & Robson, A. D. New Phytol. 120, 371–380 (1992).

    Article  CAS  Google Scholar 

  26. Pearson, J. N. & Jakobsen, I. New Phytol. 124, 481–488 (1993).

    Article  CAS  Google Scholar 

  27. Ueda, Y. & Oshima, Y. Molec. gen. Genet. 136, 255–259 (1975).

    Article  CAS  Google Scholar 

  28. Harrison, M. J. & Dixon, R. A. Pl. J. 6, 9–20 (1994).

    Article  CAS  Google Scholar 

  29. Eckenrode, V. K., Arnold, J. & Meagher, R. B. J. molec. Evol. 21, 259–269 (1985).

    Article  ADS  CAS  Google Scholar 

  30. Kawasaki, E. S. in PCR Protocols (eds Innis, M. A., Gelfand, D. H., Sninsky, J. J. & White, T. J.) 21–28 (Academic, San Diego, 1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harrison, M., Buuren, M. A phosphate transporter from the mycorrhizal fungus Glomus versiforme. Nature 378, 626–629 (1995). https://doi.org/10.1038/378626a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/378626a0

  • Springer Nature Limited

This article is cited by

Navigation