Skip to main content
Log in

Control of protein–ligand recognition using a stimuli-responsive polymer

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

STIMULI-responsive polymers exhibit reversible phase changes in response to changes in environmental factors such as pH or temperature1–14. Conjugating such polymers to antibodies and proteins provides molecular systems for applications such as affinity separations, immunoassays and enzyme recovery and recycling15– 25. Here we show that conjugating a temperaturesensitive polymer to a genetically engineered site on a protein allows the protein's ligand binding affinity to be controlled. We synthesized a mutant of the protein streptavidin to enable sitespecific conjugation of the responsive polymer near the protein's binding site. Normal binding of biotin to the modified protein occurs below 32 °C, whereas above this temperature the polymer collapses and blocks binding. The collapse of the polymer and thus the enabling and disabling of binding, is reversible. Such environmentally triggered control of binding may find many applications in biotechnology and biomedicine, such as the control of enzyme reaction rates and of biosensor activity, and the controlled release of drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hoffman, A. S. Artif. Organs 19, 458–467 (1995).

    Article  CAS  Google Scholar 

  2. Heskins, M. & Guillet, J. E. J. Macromol. Sci. Chem. A2(8), 1441–1455 (1968).

    Article  CAS  Google Scholar 

  3. Tanaka, T. Scient. Am. 244, 124–138 (1981).

    Article  CAS  Google Scholar 

  4. Cussler, E. L., Stokar, M. R. & Varberg, J. E. Am. Inst. Chem. Eng. J. 30, 578–582 (1984).

    Article  CAS  Google Scholar 

  5. Ishihara, K., Hanada, N., Kato, S. & Shinohara, I. Polymer J. 16, 625–631 (1984).

    Article  CAS  Google Scholar 

  6. Hoffman, A. S. J. contr. Rel. 6, 297–305 (1987).

    Article  CAS  Google Scholar 

  7. Brannon-Peppas, L. & Peppas, N. A. J. contr. Rel. 8, 267–274 (1989).

    Article  CAS  Google Scholar 

  8. Irie, M. Adv. Polym. Sci. 94, 28–67 (1990).

    Google Scholar 

  9. Kabra, B. & Gehrke, S. H. Polymer Commun. 32, 322–323 (1991).

    CAS  Google Scholar 

  10. Kwon, I. C., Bae, Y. H. & Kim, S. W. Nature 354, 291–293 (1991).

    Article  ADS  CAS  Google Scholar 

  11. Kokufata, E., Zhang, Y. Q. & Tanaka, T. J. Biomater. Sci. Polym. Ed. 6, 35–40 (1994).

    Article  Google Scholar 

  12. Okuzaki, H. & Osada, Y. J. Biomater. Sci. Polym. Ed. 5, 485–496 (1994).

    Article  CAS  Google Scholar 

  13. Chen, G. H. & Hoffman, A. S. Nature 373, 49–52 (1995).

    Article  ADS  CAS  Google Scholar 

  14. Yoshida, R. et al. Nature 374, 240–242 (1995).

    Article  ADS  CAS  Google Scholar 

  15. Monji, N. & Hoffman, A. S. Appl. Biochem. Biotech. 14, 107–120 (1987).

    Article  CAS  Google Scholar 

  16. Chen, J. P. & Hoffman, A. S. Biomaterials 11, 625–630, 631–634 (1990).

    Article  CAS  Google Scholar 

  17. Monji, N. et al. Biochem. Biophys. Res. Commun. 172, 652–660 (1990).

    Article  CAS  Google Scholar 

  18. Yang, H. J., Cole, C. A., Monji, N. & Hoffman, A. S. J. Polymer Sci. A28, 219–226 (1990).

    CAS  Google Scholar 

  19. Chen, G. H. & Hoffman, A. S. ACS Polym. Preprints 33, 468–469 (1992).

    CAS  Google Scholar 

  20. Chen, G. H. & Hoffman, A. S. Bioconj. Chem. 4, 509–514 (1993).

    Article  CAS  Google Scholar 

  21. Takei, Y. G. et al. Bioconj. Chem. 4, 42–46 (1993).

    Article  CAS  Google Scholar 

  22. Monji, N., Cole, C. A. & Hoffman, A. S. J. Biomater. Sci. Polym. Ed. 5, 407–420 (1994).

    Article  CAS  Google Scholar 

  23. Chen, G. H. & Hoffman, A. S. J. Biomater. Sci. Polym. Ed. 5, 371–382 (1994).

    Article  Google Scholar 

  24. Chen, G. H. & Hoffman, A. S. Macromolec. Chem. Phys. 196, 1251–1259 (1995).

    Article  CAS  Google Scholar 

  25. Chilkoti, A., Chen, G., Stayton, P. S. & Hoffman, A. S. Bioconj. Chem. 5, 504–507 (1994).

    Article  CAS  Google Scholar 

  26. Stayton, P. S., Fisher, M. & Sligar, S. G. J. biol. Chem. 267, 13544–13548 (1988).

    Google Scholar 

  27. Weber, P. C., Ohlendorf, D. H., Wendoloski, J. J. & Salemme, F. R. Science 243, 85–88 (1989).

    Article  ADS  CAS  Google Scholar 

  28. Burns, J. A., Butler, J. C., Moran, J. & Whitesides, G. M. J. org. Chem. 56, 2648–2650 (1991).

    Article  CAS  Google Scholar 

  29. Chilkoti, A., Tan, P. & Stayton, P. S. Proc. natn. Acad. Sci. U.S.A. 92, 1754–1758 (1995).

    Article  ADS  CAS  Google Scholar 

  30. Kraulis, P. J. appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stayton, P., Shimoboji, T., Long, C. et al. Control of protein–ligand recognition using a stimuli-responsive polymer. Nature 378, 472–474 (1995). https://doi.org/10.1038/378472a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/378472a0

  • Springer Nature Limited

This article is cited by

Navigation