Skip to main content

Advertisement

Log in

Scaling of elastic strain energy in kangaroos and the benefits of being big

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

LARGE kangaroos are unique among mammals in their ability to uncouple aerobic metabolic energy costs from the speed of locomotion1,2, making hopping an economical gait. During the first half of the ground-contact phase, kinetic energy lost from the body is stored as elastic strain energy, predominantly in the hind limbs3–5. The subsequent recoil returns kinetic and potential energy to the body. Here we show that the allometry of structures in the legs and feet of Macropodoidea is different from that of quadrupedal eutherian mammals. The potential for elastic energy storage in hoppers is shown to scale with strong positive allometry. This is a function of the structural properties of muscle–tendon units in the distal hind limbs and the postures adopted by hopping kangaroos. Our findings demonstrate how the use of tissue elasticity is strongly mass dependent and help explain the observed energetic phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dawson, T. J. & Taylor, C. R. Nature 246, 313–314 (1973).

    Article  ADS  Google Scholar 

  2. Baudinette, R. V., Snyder, G. K. & Frappell, P. B. Am. J. Physiol. 262, R771–R778 (1992).

    CAS  PubMed  Google Scholar 

  3. Cavagna, G. A., Heglund, N. C. & Taylor, C. R. Am. J. Physiol. 233, R243–R261 (1977).

    CAS  PubMed  Google Scholar 

  4. Alexander, R. McN. & Vernon, A. J. Zool., Lond. 177, 265–300 (1975).

    Article  Google Scholar 

  5. Ker, R. F., Dimery, N. J. & Alexander, R. McN. J. Zool., Lond. (A) 208, 417–428 (1986).

    Article  Google Scholar 

  6. Windsor, D. E. & Dagg, A.I. J. Zool., Lond. 163, 165–175 (1971).

    Article  Google Scholar 

  7. Thompson, S. D., MacMillen, R. E., Burke, E. M. & Taylor, C. R. Nature 287, 223–224 (1980).

    Article  ADS  CAS  Google Scholar 

  8. Alexander, R. McN. Elastic Mechanisms in Animal Movement (Cambridge Univ. Press, 1988).

    Google Scholar 

  9. Bennett, M. B. J. Zool., Lond. 235, 33–42 (1995).

    Article  Google Scholar 

  10. Pollock, C. M. & Shadwick, R. E. Am. J. Physiol. 266, R1022–1031 (1994).

    CAS  PubMed  Google Scholar 

  11. Bennett, M. B., Dimery, N. J., Ker, R. F. & Alexander, R. McN. J. Zool., Lond. 209, 537–548 (1986).

    Article  Google Scholar 

  12. Biewener, A. A. Science 250, 1097–1103 (1990).

    Article  ADS  CAS  Google Scholar 

  13. Alexander, R. McN., Maloiy, G. M. O., Njau, R. & Jayes, A. S. J. Zool., Lond. 187, 169–178 (1979).

    Article  Google Scholar 

  14. Bennett, M. B. J. Zool. Lond. 212, 457–464 (1987).

    Article  Google Scholar 

  15. Herzog, W., Leonard, T. R. & Guimaraes, A. C. S. J. Biomech. 26, 945–953 (1993).

    Article  CAS  Google Scholar 

  16. Murray, P. in Vertebrate Palaeontology of Australasia (eds Vickers-Rich, P., Monaghan, J.M., Baird, R. F., & Rich, T. H.) 1071–1164 (Monash Univ. Publications Committee, Mel-bourne, 1991).

    Google Scholar 

  17. Farley, C. T., Glasheen, J. & McMahon, T. A. J. exp. Biol. 185, 71–86 (1993).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bennett, M., Taylor, G. Scaling of elastic strain energy in kangaroos and the benefits of being big. Nature 378, 56–59 (1995). https://doi.org/10.1038/378056a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/378056a0

  • Springer Nature Limited

This article is cited by

Navigation