Skip to main content
Log in

Bee foraging in uncertain environments using predictive hebbian learning

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

RECENT work has identified a neuron with widespread projections to odour processing regions of the honeybee brain whose activity represents the reward value of gustatory stimuli1,2. We have constructed a model of bee foraging in uncertain environments based on this type of neuron and a predictive form of hebbian synaptic plasticity. The model uses visual input from a simulated three-dimensional world and accounts for a wide range of experiments on bee learning during foraging, including risk aversion. The predictive model shows how neuromodulatory influences can be used to bias actions and control synaptic plasticity in a way that goes beyond standard correlational mechanisms. Although several behavioural models of conditioning in bees have been proposed3–7, this model is based on the neural substrate and was tested in a simulation of bee flight.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hammer, M. Nature 366, 59–63 (1993).

    Article  ADS  CAS  Google Scholar 

  2. Hammer, M. & Menzel, R. J. Neuroscience 15, 1617–1630 (1995).

    Article  CAS  Google Scholar 

  3. Couvillon, P. A. & Bitterman, M. E. Anim. Leam. Behav. 13, 246–252 (1985).

    Article  Google Scholar 

  4. Couvillon, P. A. & Bitterman, M. E. Anim. Leam. Behav. 14, 225–231 (1986).

    Article  Google Scholar 

  5. Couvillon, P. A., Lee, Y. & Bitterman, M. E. Anim. Leam. Behav. 19, 381–387 (1991).

    Article  Google Scholar 

  6. Greggers, U. & Menzel, M. Behav. Ecol. Sociobiol. 32, 17–29 (1993).

    Article  Google Scholar 

  7. Menzel, R., Greggers, U. & Hammer, M. in Insect Learning: Ecology and Evolutionary Perspectives (eds Papaj, D. R. & Lewis, A. C.) 79–125 (Chapman and Hall, London. 1993).

    Book  Google Scholar 

  8. Real, L. A. Science 253, 980–986 (1991).

    Article  ADS  CAS  Google Scholar 

  9. Real, L. A. Ecology 62, 20–26 (1981).

    Article  Google Scholar 

  10. Harder, L. D. & Real, L. A. Ecology 68, 1104–1108 (1987).

    Article  Google Scholar 

  11. Real, L. A., Ellner, S. & Harder, L. D. Ecology 71 1625–1628 (1990).

    Article  Google Scholar 

  12. Beny, D. A. & Fristedt, B. Bandit Problems: Sequential Allocation of Experiments (Chapman and Hall, London, 1985).

    MATH  Google Scholar 

  13. Krebs, J. R., Kacelnik, A. & Taylor, P. Nature 275, 27–31 (1978).

    Article  ADS  Google Scholar 

  14. Montague, P. R., Dayan, P. Nowlan, S. J. Pouget, A. & Sejnowskl, T. J. in Advances in Neural Information Processing Systems 5 (eds Hanson, S. J., Cowan, J. D. & Giles, C. L.) 969–976 (Morgan Kaufmann, San Mateo, CA. 1993).

    Google Scholar 

  15. Montague, P. R. & Sejnowskl, T. J. Learn. Memory 1, 1–33 (1994).

    CAS  Google Scholar 

  16. Konorski, J. Conditioned Reflexes and Neuron Organization (Cambridge University Press, Cambridge, 1948).

    Google Scholar 

  17. Hebb, D. O. The Organization of Behavior (Wiley, New York, 1949).

    Google Scholar 

  18. Samuel, A. L. IBM. J. Res. Dev. 3, 211–229 (1959).

    Article  Google Scholar 

  19. Sutton, R. S. & Barto, A. G. Psych. Rev. 88, 135–170 (1981).

    Article  CAS  Google Scholar 

  20. Sutton, R. S. & Barto, A. G. in Learning and Computational Neuroscience (eds Gabriet, M. & Moore J. W.) 497–538 (MIT Press, Cambridge, MA. 1987).

    Google Scholar 

  21. Sutton, R. S. Machine Learn. 3, 9–44 (1988).

    Google Scholar 

  22. Barto, A. G. Sutton, R. S. & Watkins, C. J. C. H. Technical Report 89-95, (Computer and Information Science. University of Massachusetts. Amherst. MA. 1989).

  23. Rescorla, R. A. & Wagner, A. R. in Classical Conditioning II: Current Research and Theory (eds Black, A. H. & Prokasy, W. H.) 64–69 (Appleton-Century-Crofts, New York, 1972).

    Google Scholar 

  24. Spudich, J. L. & Koshland, D. E. Proc. natn. Acad. Sci. U.S.A. 72, 710–713 (1975).

    Article  ADS  CAS  Google Scholar 

  25. Lockery, S. R. & Kristan, W. B. J. comp. Physiol. 168, 165–177 (1991).

    Article  CAS  Google Scholar 

  26. Goldstein, R. S. & Camhi, J. M. J. comp. Physiol. 168, 103–112 (1991).

    Article  CAS  Google Scholar 

  27. Harris-Warrick, R. M., Coniglio, L. M., Barazangi, N., Guckenheimer, J. & Gueron, S. J. Neurosci. 15, 342–358 (1995).

    Article  CAS  Google Scholar 

  28. Hammer, M. & Menzel, R. Soc. Neurosci. Abstr. 20, 582 (1994).

    Google Scholar 

  29. Schultz, W., Apicella, P. & Ljungberg, T. J. Neurosci. 13, 900–913 (1993).

    Article  CAS  Google Scholar 

  30. Widrow, B. & Stearns, S. D. Adaptive Signal Processing (Prentice-Hall, Englewood Cliffs. 1985).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Montague, P., Dayan, P., Person, C. et al. Bee foraging in uncertain environments using predictive hebbian learning. Nature 377, 725–728 (1995). https://doi.org/10.1038/377725a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/377725a0

  • Springer Nature Limited

This article is cited by

Navigation