Skip to main content
Log in

Observation of laser-induced fluorescent cooling of a solid

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

THE possibility that an object might cool through its interaction with radiation was suggested as early as 1929 by Pringsheim1. After Landau2 established the basic thermodynamic consistency of such a process, certain aspects of fluorescent cooling were vigorously pursued3á¤-11. In particular, laser 'Doppler' cooling of gas-phase atoms and ions has today grown into a robust research area12á¤-15. In contrast, attempts to cool solids with light have met with limited success; non-radiative heating effects tend to dominate, and fluorescent cooling has at best resulted in a reduction in overall heating rates6. Here we report the experimental realization of net cooling of a solid with radiation. The cooling efficiencies achieved (up to 2%) are more than 104 times those observed in Doppler cooling of gases. By pumping a fluorescent cooling element with a high-efficiency diode laser, it may be possible to construct a compact, solid-state optical cryocooler, thereby allowing widespread deployment of cryogenic electronics and detectors in space and elsewhere16.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pringsheim, P. Z. Phys. 57, 739–746 (1929).

    Article  CAS  Google Scholar 

  2. Landau, L. J. Phys. (Moscow) 10, 503–506 (1946).

    Google Scholar 

  3. Kastler, A. J. Phys. Radium 11, 255–265 (1950).

    Article  CAS  Google Scholar 

  4. Scovil, H. E. D. & Schulz-DuBois, E. O. Phys. Rev. Lett. 2, 262–263 (1959).

    Article  ADS  Google Scholar 

  5. Yatsiv, S. in Advances in Quantum Electronics (ed. Singer, J. R.) 200–213 (Columbia Univ. Press. New York, 1961).

    Google Scholar 

  6. Kushida, T. & Geusic, J. E. Phys. Rev. Lett. 21, 1172–1175 (1968).

    Article  ADS  CAS  Google Scholar 

  7. Chang, S., Elliott, S. S., Gustafson, T. K., Hu, C. & Jain, R. K. IEEE J. Quant. Electron. 8, 527–528 (1972).

    Article  ADS  Google Scholar 

  8. Chukova, Y. P. Bull. Acad. Sci. USSR. Phys. Ser. 38, 57–59 (1974).

    Google Scholar 

  9. Chukova, Y. P. Soviet Phys. JETP 41, 613–616 (1976).

    ADS  Google Scholar 

  10. Landsberg, P. T. & Tonge, G. J. appl. Phys. 51, R1–R20 (1980).

    Article  ADS  CAS  Google Scholar 

  11. Djeu, N. & Whitney, W. T. Phys. Rev. Lett. 46, 236–239 (1981).

    Article  ADS  Google Scholar 

  12. Hänsch, T. W. & Schawlow, A. L. Opt. Commun. 13, 68–69 (1975).

    Article  ADS  Google Scholar 

  13. Phillips, W. D., Gould, P. L. & Lett, P. D. Science 239, 877–883 (1988).

    Article  ADS  CAS  Google Scholar 

  14. Cohen-Tannoudji, C. N. & Phillips, W. D. Phys. Today 43, (10). 33–40 (1990).

    Article  CAS  Google Scholar 

  15. Chu, S. Science 253, 861–866 (1991).

    Article  ADS  CAS  Google Scholar 

  16. Edwards, B. C., Buchwald, M. I., Epstein, R. I., Gosnell, T. R. & Mungan, C. E. in Proc. 9th A. AIAA/Utah State Univ. Conf. on Small Satellites (ed. Redd, F.) (Utah State Univ., Logan, in the press).

  17. Dieke, G. H. Spectra and Energy Levels of Rare Earth lons in Crystals (Interscience, New York, 1968).

    Google Scholar 

  18. Boccara, A. C., Fournier, D., Jackson, W. & Amer, N. M. Opt. Lett. 5, 377–379 (1980).

    Article  ADS  CAS  Google Scholar 

  19. Commandré, M., Bertrand, L., Albrand, G. & Pelletier, E. Proc. Soc. Photo-Opt. Instrum. Engng 805, 128–135 (1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Epstein, R., Buchwald, M., Edwards, B. et al. Observation of laser-induced fluorescent cooling of a solid. Nature 377, 500–503 (1995). https://doi.org/10.1038/377500a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/377500a0

  • Springer Nature Limited

This article is cited by

Navigation