Skip to main content
Log in

Functional MRI evidence for adult motor cortex plasticity during motor skill learning

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

PERFORMANCE of complex motor tasks, such as rapid sequences of finger movements, can be improved in terms of speed and accuracy over several weeks by daily practice sessions. This improvement does not generalize to a matched sequence of identical component movements, nor to the contralateral hand. Here we report a study of the neural changes underlying this learning using functional magnetic resonance imaging (MRI) of local blood oxy-genation level-dependent (BOLD)1–4 signals evoked in primary motor cortex (Ml). Before training, a comparable extent of Ml was activated by both sequences. However, two ordering effects were observed: repeating a sequence within a brief time window initially resulted in a smaller area of activation (habituation), but later in a larger area of activation (enhancement), suggesting a switch in Ml processing mode within the first session (fast learning). By week 4 of training, concurrent with asymptotic performance, the extent of cortex activated by the practised sequence enlarged compared with the unpractised sequence, irrespective of order (slow learning). These changes persisted for several months. The results suggest a slowly evolving, long-term, experience-dependent reorganization of the adult Ml, which may underlie the acquisition and retention of the motor skill.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bandettini, P. A., Wong, E., C., Hinks, R. S., Tikofsky, R. S. & Hyde, J. S. Magn. Reson. Med. 25, 390–397 (1992).

    Article  CAS  Google Scholar 

  2. Kim, S. G. et al. J. Neurophysiol. 69, 297–302 (1993).

    Article  CAS  Google Scholar 

  3. Kwong, K. K. et al. Proc. natn. Acad. Sci. U.S.A. 89, 5675–5679 (1992).

    Article  ADS  CAS  Google Scholar 

  4. Ogawa, S. et al. Proc. natn. Acad. Sci. U.S.A. 89, 5951–5955 (1992).

    Article  ADS  CAS  Google Scholar 

  5. Sterling, M. K., Turner, R. & Mansfield, P. Science 254, 716–719 (1991).

    Article  Google Scholar 

  6. Miller, E. K., Gochin, P. M. & Gross, C. G. Vis. Neurosci. 7, 357–362 (1991).

    Article  CAS  Google Scholar 

  7. Warach, S. et al. J. cerebr. Blood Flow Metab. 12, 546–553 (1992).

    Article  CAS  Google Scholar 

  8. Recanzone, G. H., Merzenich, M. M., Jenkins, W. M., Grajski, K. A. & Dinse, H. R. J. Neurophysiol. 67, 1031–1056 (1992).

    Article  CAS  Google Scholar 

  9. Sanes, J. N., Wang, J. Donoghue, J. P. Cerebr. Cortex 2, 141–152 (1992).

    Article  CAS  Google Scholar 

  10. Milliken, G. W., Nudo, R. J., Grenda, R., Jenkins, W. M. & Merzenich, M. M. Soc. Neurosci. Abstr. 18, 506 (1992).

    Google Scholar 

  11. Jacobs, K. M. & Donoghue, J. H. Science 251, 944–947 (1991).

    Article  ADS  CAS  Google Scholar 

  12. Kami, A. & Sagi, D. Nature 365, 250–252 (1993).

    Article  ADS  Google Scholar 

  13. Asanuma, H. & Keller, A. NeuroReport 2, 217–224 (1991).

    Article  CAS  Google Scholar 

  14. Seitz, R. J. et al. NeuroReport 1, 57–66 (1990).

    Article  MathSciNet  CAS  Google Scholar 

  15. Friston, K. J., Frith, C. D., Passingham, R. E., Liddle, P. F. & Frackowiak, R. S. J. Proc. R. Soc. Lond. B 248, 223–228 (1992).

    Article  ADS  CAS  Google Scholar 

  16. Jenkins, I. H., Brooks, D. J., Nixon, P. D., Frackowiak, R. S. J. & Passingham, R. E. J. Neurosci. 14, 3775–3790 (1994).

    Article  CAS  Google Scholar 

  17. Schlaug, G., Knorr, U. & Seitz, R. J. Expl Brain Res. 98, 523–534 (1994).

    Article  CAS  Google Scholar 

  18. Grafton, S. T. et al. J. Neurosci. 12, 2542–2548 (1992).

    Article  CAS  Google Scholar 

  19. Kawashima, R., Roland, P. E. & O'Sullivan, B. T. J. Neurosci. 14, 3462–3474 (1994).

    Article  CAS  Google Scholar 

  20. Pascual-Leone, A. et al. Neurology 43, A157 (1993).

    Google Scholar 

  21. Pascual-Leone, A., Grafman, J. & Hallett, M. Science 263, 1287–1289 (1994).

    Article  ADS  CAS  Google Scholar 

  22. Mishkin, M., Malamut, B. & Bachevalier, J. in The Neurobiology of Learning and Memory (eds Lynch, G., McGaugh, J. L. & Weinberger, N. M.) 64–88 (Guilford, New York, 1984).

    Google Scholar 

  23. Le Bihan, D. et al. Proc. Soc. magn. Reson. Med. 1, 11 (1993).

    Google Scholar 

  24. Friston, K., Jezzard, P. & Turner, R. Hum. Brain Mapp. 1, 153–171 (1994).

    Article  Google Scholar 

  25. Rademacher, J., Caviness, V. S., Steinmetz, H. & Galaburda, A. M. Cerebr. Cortex 3, 313–329 (1993).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kami, A., Meyer, G., Jezzard, P. et al. Functional MRI evidence for adult motor cortex plasticity during motor skill learning. Nature 377, 155–158 (1995). https://doi.org/10.1038/377155a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/377155a0

  • Springer Nature Limited

This article is cited by

Navigation