Skip to main content
Log in

Modulation of conscious experience by peripheral sensory stimuli

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

LACK of awareness of touch associated with brain damage may transiently recover after stimulation of the vestibular system1,2. We used positron emission tomographic regional cerebral blood flow measurements to study the neurophysiological effect of vestibular stimulation on touch imperception in a subject with a right brain lesion. We tested the hypothesis that the vestibular system aids conscious tactile perception by introducing a bias in the neural system subserving body representation. We show that in normal subjects touch and vestibular signals share projections to the puta-men, insula, somatosensory area II, premotor cortex and supra-marginal gyrus. In our patient a subset of these regions (right putamen and insula) was spared by the lesion and was maximally active when touch and vestibular stimulations were combined. These results support the suggestion that our phenomenological consciousness is associated with activation in circumscribed brain areas specific to the particular sensation of which we are aware.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Vallar, G. et al. Cortex 26, 123–131 (1990).

    Article  CAS  Google Scholar 

  2. Vallar, G., Bottini, G., Rusconi, M. L. & Sterzi, R. Brain 116, 71–86 (1993).

    Article  Google Scholar 

  3. Raichle, M. in Handbook of Physiology (eds Mouncastle, V. B., Plum, F. & Geiger, S. R.) 643–674 (American Physiological Society, Bethesda, MD, 1987).

    Google Scholar 

  4. Silbersweig, D. A. et al. J. cereb. Blood Flow Metab. 3, 617–629 (1993).

    Article  Google Scholar 

  5. Lidvall, H. F. Acta Otolaryngol. 53, 33–44 (1962).

    Article  Google Scholar 

  6. Friston, K. J. et al. J. cereb. Blood Flow Metab. 10, 458–466 (1990).

    Article  CAS  Google Scholar 

  7. Friston, K. J., Frith, C. D., Liddle, P. F. & Frackowiak, R. S. J. J. cereb. Blood Flow Metab. 11, 690–699 (1991).

    Article  CAS  Google Scholar 

  8. Bottini, G. et al. Exp Brain Res. 99, 164–169 (1994).

    Article  CAS  Google Scholar 

  9. Mesulam, M.-M. & Mufson, E. J. in Association and Auditory Cortices (eds Peters, A. & Jones, E. G.) 179–226 (Plenum, New York, 1985).

    Book  Google Scholar 

  10. Burton, H., Videen, T. O. & Raichle, M. E. Somatosens. Motor Res. 10, 297–308 (1993).

    Article  CAS  Google Scholar 

  11. Barbur, J. L., Watson, J. D. G., Frackowiak, R. S. J. & Zeki, S. Brain 116, 1293–1302 (1993).

    Article  Google Scholar 

  12. Talairach, J. & Tournoux, P. A Co-planar Stereotactic Atlas of the Human Brain (Thieme, Stuttgart, 1988).

    Google Scholar 

  13. Townsend, D. W. et al. IEEE Trans. med. Imaging 10, 505–512 (1991).

    Article  CAS  Google Scholar 

  14. Spinks, T. J. et al. Phys. med. Biol. 37, 1637–1655 (1992).

    Article  CAS  Google Scholar 

  15. Fox, P. T. & Mintun, M. A. J. nucl. Med. 30, 141–149 (1989).

    CAS  PubMed  Google Scholar 

  16. Friston, K. J. et al. J. cereb. Blood Flow Metab. 9, 690–695 (1989).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bottini, G., Paulesu, E., Sterzi, R. et al. Modulation of conscious experience by peripheral sensory stimuli. Nature 376, 778–781 (1995). https://doi.org/10.1038/376778a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/376778a0

  • Springer Nature Limited

This article is cited by

Navigation