Skip to main content

Advertisement

Log in

Sequestration of the membrane-targeting myristoyl group of recoverin in the calcium-free state

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

RECOVERIN, a retinal calcium-binding protein of relative molecular mass (Mr) 23K, participates in the recovery phase of visual excitation and in adaptation to background light1–3. The C a2 +-bound form of recoverin prolongs the photoresponse4, probably by blocking phosphorylation of photoexcited rhodopsin5. Retinal recoverin contains a covalently attached myristoyl group or related acyl group at its amino terminus6 and two Ca2+ -binding sites7. Ca2+ binding to myristoylated, but not unmyristoylated, recoverin induces its translocation to bilayer membranes, indicating that the myristoyl group is essential to the read-out of calcium signals (calcium-myristoyl switch)8,9. Here we present the solution structure of Ca2+-free, myristoylated recombinant recoverin obtained by heteronuclear multidimensional NMR spectroscopy. The myristoyl group is sequestered in a deep hydrophobic pocket formed by many aromatic and other hydrophobic residues from five flanking helices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stryer, L. J. biol. Chem. 266, 10711–10714 (1991).

    CAS  Google Scholar 

  2. Koch, K.-W. Rev. Physiol. Biochem. Pharmac. 125, 149–192 (1994).

    Article  CAS  Google Scholar 

  3. Dizhoor, A. M. et al. Science 251, 915–918 (1991).

    Article  ADS  CAS  Google Scholar 

  4. Gray-Keller, M. P., Polans, A. S., Palczewski, K. & Detwiler, P. B. Neuron 10, 523–531 (1993).

    Article  CAS  Google Scholar 

  5. Kawamura, S., Hisatomi, O., Kayada, S., Tokunaga, F. & Kuo, C.-H. J. biol. Chem. 268, 14579–14582 (1993).

    CAS  PubMed  Google Scholar 

  6. Dizhoor, A. M. et al. J. biol. Chem. 267, 16033–16036 (1992).

    CAS  PubMed  Google Scholar 

  7. Ames, J. B., Porumb, T., Tanaka, T., Ikura, M. & Stryer, L. J. biol. Chem. 270, 4526–4533 (1995).

    Article  CAS  Google Scholar 

  8. Zozulya, S. & Stryer, L. Proc. natn. Acad. Sci. U.S.A. 89, 11569–11573 (1992).

    Article  ADS  CAS  Google Scholar 

  9. Dizhoor, A. M. et al. Science 259, 829–832 (1993).

    Article  ADS  CAS  Google Scholar 

  10. Babu, Y. S., Bugg, C. E. & Cook, W. J. J. molec. Biol. 24, 191–204 (1988).

    Article  Google Scholar 

  11. Herzberg, O. & James, M. N. G. J. molec. Biol. 203, 761–779 (1988).

    Article  CAS  Google Scholar 

  12. Zheng, J. et al. Protein Sci. 2, 1559–1573 (1993).

    Article  CAS  Google Scholar 

  13. Chow, M. et al. Nature 327, 482–486 (1987).

    Article  ADS  CAS  Google Scholar 

  14. Ames, J. B., Tanaka, T., Stryer, L. & Ikura, M. Biochemistry 33, 10743–10753 (1994).

    Article  CAS  Google Scholar 

  15. Yamagata, K., Goto, K., Kuo, C.-H., Kondo, H. & Miki, N. Neuron 2, 469–476 (1990).

    Article  Google Scholar 

  16. Kobayashi, M., Takamatsu, K., Saitoh, S. & Noguchi, T. J. biol. Chem. 268, 18898–18904 (1993).

    CAS  PubMed  Google Scholar 

  17. Ladant, D. J. biol. Chem. 270, 3179–3185 (1995).

    CAS  PubMed  Google Scholar 

  18. Kuno, T. et al. Biochem. biophys. Res. Commun. 184, 1219–1225 (1992).

    Article  CAS  Google Scholar 

  19. Resh, M. D. Cell 76, 411–413 (1994).

    Article  CAS  Google Scholar 

  20. Flaherty, K. M., Zozulya, S., Stryer, L. & McKay, D. B. Cell 75, 709–716 (1993).

    Article  CAS  Google Scholar 

  21. Helms, J. B., Palmer, D. J. & Rothman, J. E. J. Cell Biol. 121, 751–760 (1993).

    Article  CAS  Google Scholar 

  22. Kim, J., Shishido, T., Jiang, X., Aderem, A. & McLaughlin, S. J. biol. Chem. 269, 28214–28219 (1994).

    CAS  PubMed  Google Scholar 

  23. Michel, T., Li, G. K. & Busconi, L. Proc. natn. Acad. Sci. U.S.A. 90, 6252–6256 (1993).

    Article  ADS  CAS  Google Scholar 

  24. Walker, F., deBlaquiere, J. & Burgess, A. W. J. biol. Chem. 268, 19552–19558 (1993).

    CAS  PubMed  Google Scholar 

  25. Nilges, M., Gronenborn, A. M., Brünger, A. T. & Clore, G. M. Protein Engng 2, 27–38 (1988).

    Article  CAS  Google Scholar 

  26. Brünger, A. T. X-PLOR Version 3.1: A System for x-ray Crystallography and NMR (Yale Univ.Press, New Haven, 1993).

    Google Scholar 

  27. Bagby, S., Harvey, T. S., Eagle, S. G., Inouye, S. & Ikura, M. Structure 2, 107–122 (1994).

    Article  CAS  Google Scholar 

  28. Kraulis, P. J. J. appl. Crystaltogr. 24, 946–950 (1991).

    Article  Google Scholar 

  29. Kobayashi, M., Takamatsu, K., Saitoh, S., Miura, M. & Noguchi, T. Biochem. biophys. Res. Commun. 189, 511–517 (1992).

    Article  CAS  Google Scholar 

  30. Okazaki, K. et al. Biochem. biophys. Res. Commun. 185, 147–153 (1992).

    Article  CAS  Google Scholar 

  31. Pongs, O. et al. Neuron 11, 15–28 (1993).

    Article  CAS  Google Scholar 

  32. Ferrin, T. E., Huang, C. C., Jarvis, L. E. & Langridge, R. J. molec. Graph. 6, 13–27 (1988).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tanaka, T., Amest, J., Harvey, T. et al. Sequestration of the membrane-targeting myristoyl group of recoverin in the calcium-free state. Nature 376, 444–447 (1995). https://doi.org/10.1038/376444a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/376444a0

  • Springer Nature Limited

This article is cited by

Navigation