Skip to main content
Log in

Latitudinal gradient of atmospheric CO2 due to seasonal exchange with land biota

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

THE concentration of carbon dioxide in the atmosphere is increasing, largely because of fossil-fuel combustion, but the rate of increase is only about half of the total emission rate1. The balance of the carbon must be taken up in the oceans and the terrestrial biosphere, but the relative importance of each of these sinks—as well as their geographical distribution and the uptake mechanisms involved—are still a matter of debate1-4. Measurements of CO2 concentrations at remote marine sites5-9 have been used with numerical models of atmospheric transport to deduce the location, nature and magnitude of these carbon sinks2,10-19. One of the most important constraints on such estimates is the observed interhemispheric gradient in atmospheric CO2 concentration. Published models that simulate the transport of trace gases suggest that the gradient is primarily due to interhemispheric differences in fossil-fuel emissions, with small contributions arising from natural exchange of CO2 with the various carbon reservoirs. Here we use a full atmospheric general circulation model with a more realistic representation of turbulent mixing near the ground to investigate CO2 transport. We find that the latitudinal (meridional) gradient imposed by the seasonal terrestrial biota is nearly half as strong as that imposed by fossil-fuel emissions. Such a contribution implies that the sinks of atmospheric CO2 in the Northern Hemisphere must be stronger than previously suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schimel, D. et al. in Climate Change 1994: Radiative Forcing of Climate Change and An Evaluation of the IPCC IS92 Emission Scenarios (eds Houghton, J. T. et al.) 39–71 (Cambridge Univ. Press, 1994).

    Google Scholar 

  2. Tans, P. P., Fung, I. Y. & Takahashi, T. Science 247, 1431–1438 (1990).

    Article  ADS  CAS  Google Scholar 

  3. Sarmiento, J. L., Orr, J. C. & Siegenthaler, U. J. geophys. Res. 97, 3621–3645 (1992).

    Article  ADS  CAS  Google Scholar 

  4. Sarmiento, J. L. & Sundquist, E. T. Nature 356, 589–593 (1992).

    Article  ADS  CAS  Google Scholar 

  5. Fraser, P. J., Pearman, G. I. & Hyson, P. J. geophys. Res. 88, 3591–3598 (1983).

    Article  ADS  CAS  Google Scholar 

  6. Conway, T. J. et al. Tellus 40B, 81–115 (1988).

    Article  ADS  CAS  Google Scholar 

  7. Keeling, C. D. & Whorf, T. P. in Trends '93: A Compendium of Data on Global Change (eds Boden, T. A., Kaiser, D. P., Sepanski, R. J. & Stoss, F. W.) 16–27 (ORNL/CDIAC-65, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, Oak Ridge, TN, 1994).

    Google Scholar 

  8. Trivett, N. B. A., Hudec, V. C. & Wong, C. S. in Trends '93: A Compendium of Data on Global Change (eds Boden, T. A., Kaiser, D. P., Sepanski, R. J. & Stoss, F. W.) 120–130 (ORNL/CDIAC-65, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, Oak Ridge, TN, 1994).

    Google Scholar 

  9. Conway, T. J. et al. J. geophys. Res. 99, 22831–22855 (1994).

    Article  ADS  Google Scholar 

  10. Pearman, G. I., Hyson, P. & Fraser, P. J. J. geophys. Res. 88, 3581–3590 (1983).

    Article  ADS  CAS  Google Scholar 

  11. Fung, I., Prentice, K., Matthews, E., Lerner, J. & Russell, G. J. geophys. Res. 88, 1281–1294 (1983).

    Article  ADS  CAS  Google Scholar 

  12. Heimann, M., Keeling, C. D. & Fung, I. Y. in The Changing Carbon Cycle: A Global Analysis (eds Trabalka, J. R. & Reichle, D. E.) 16–49 (Springer, New York, 1986).

    Book  Google Scholar 

  13. Fung, I. Y. in The Changing Carbon Cycle: A Global Analysis (eds Trabalka, J. R. & Reichle, D. E.) 459–473 (Springer, New York, 1986).

    Book  Google Scholar 

  14. Fung, I. Y., Tucker, C. J. & Prentice, K. C. J. geophys. Res. 92, 2999–3015 (1987).

    Article  ADS  CAS  Google Scholar 

  15. Tans, P. P., Conway, T. J. & Nakazawa, T. J. geophys. Res. 94, 5151–5172 (1989).

    Article  ADS  CAS  Google Scholar 

  16. Enting, I. G. & Mansbridge, J. V. Tellus 39B, 318–325 (1989).

    Article  ADS  Google Scholar 

  17. Heimann, M. & Keeling, C. D. in Aspects of Climate Variability in the Pacific and Western Americas (ed. Peterson, D. H.) 237–275 (Geophys. Monogr. 55, Am. Geophys. Union, Washington DC, 1989).

    Google Scholar 

  18. Keeling, C. D., Piper, S. C. & Heimann, M. in Aspects of Climate Variability in the Pacific and Western Americas (ed. Peterson, D. H.) 305–363 (Geophys. Monogr. 55, Am. Geophys. Union, Washington DC, 1989).

    Google Scholar 

  19. Enting, I. G. & Mansbridge, J. V. Tellus 43B, 156–170 (1991).

    Article  ADS  CAS  Google Scholar 

  20. Gifford, R. M. Aust. J. Pl. Physiol. 21, 1–15 (1994).

    Google Scholar 

  21. Schindler, D. W. & Bayley, S. E. Globl Biogeochem. Cycles 7, 717–734 (1993).

    Article  ADS  CAS  Google Scholar 

  22. Dixon, R. K. et al. Science 263, 185–190 (1994).

    Article  ADS  CAS  Google Scholar 

  23. Dai, A. & Fung, I. Y. Globl Biogeochem. Cycles 7, 599–610 (1993).

    Article  ADS  CAS  Google Scholar 

  24. Pasquill, F. Met. Mag. 90, 33–49 (1961).

    Google Scholar 

  25. Stull, R. B. An Introduction to Boundary Layer Meteorology (Kluwer Academic, Dordrecht, 1988).

    Book  Google Scholar 

  26. Randall, D. A., Harshvardhan, Dazlich, D. A. & Corsetti, T. G. J. atmos. Sci. 46, 1943–1970 (1989).

    Article  ADS  Google Scholar 

  27. Randall, D. A., Harshvardhan & Dazlich, D. A. J. atmos. Sci. 48, 40–62 (1991).

    Article  ADS  Google Scholar 

  28. Randall, D. A. & Pan, D.-M. in The Representation of Cumulus Convection in Numerical Models (eds Emanuel, K. & Raymond, D.) 137–144 (Met. Monogr. 24, Am. Meteorological Soc., Boston, 1993).

    Book  Google Scholar 

  29. Suarez, M., Arakawa, A. & Randall, D. A. Mon. Weath. Rev. 111, 2224–2243 (1983).

    Article  ADS  Google Scholar 

  30. Randall, D. A., Abeles, J. A. & Corsetti, T. G. J. atmos. Sci. 42, 641–676 (1985).

    Article  ADS  Google Scholar 

  31. Denning, A. S. Investigations of the Transport, Sources, and Sinks of Atmospheric CO2 Using a General Circulation Model (Atmos. Sci. Pap. 564, Colorado State Univ., Fort Collins, CO, 1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Denning, A., Fung, I. & Randall, D. Latitudinal gradient of atmospheric CO2 due to seasonal exchange with land biota. Nature 376, 240–243 (1995). https://doi.org/10.1038/376240a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/376240a0

  • Springer Nature Limited

This article is cited by

Navigation