Skip to main content
Log in

Powering the flagellar motor of Escherichia coli with an external voltage source

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

ROTARY motors of bacterial flagella are driven by ions that move across the cytoplasmic membrane down an electrochemical gradient1–4. For Escherichia coli, the ions are protons, and the maximum work per unit charge that they can do is the proton-motive force. To test whether motor efficiency is limited by proton leakage or mechanical nonlinearities, we measured torque as a function of protonmotive force. Filamentous cells were drawn into micropipettes and energized with an external voltage source. Torque was proportional to protonmotive force up to –150 mV, twice the span accessible by earlier techniques5–9. This is consistent with a mechanism in which a fixed number of protons, working at unit efficiency, carry the motor through each revolution. We also found that individual torque-generating elements inactivate at low potentials or potentials of reverse sign. When normal potentials are restored, they reactivate sequentially.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Blair, D. F. Semin. Cell Biol. 1, 75–85 (1990).

    CAS  PubMed  Google Scholar 

  2. Jones, C. J. & Aizawa, S.-I. Adv. microb. Physiol. 32, 109–172 (1991).

    Article  CAS  Google Scholar 

  3. Macnab, R. M. A. Rev. Genet. 26, 131–158 (1992).

    Article  CAS  Google Scholar 

  4. Schuster, S. C. & Khan, S. A. Rev. Biophys. biomolec. Struct. 23, 509–539 (1994).

    Article  CAS  Google Scholar 

  5. Manson, M. D., Tedesco, P. M. & Berg, H. C. J. molec. Biol. 138, 541–561 (1980).

    Article  CAS  Google Scholar 

  6. Conley, M. P. & Berg, H. C. J. Bact. 158, 832–843 (1984).

    CAS  PubMed  Google Scholar 

  7. Khan, S., Meister, M. & Berg, H. C. J. molec. Biol. 184, 645–656 (1985).

    Article  CAS  Google Scholar 

  8. Meister, M. & Berg, H. C. Biophys. J. 52, 413–419 (1987).

    Article  ADS  CAS  Google Scholar 

  9. Meister, M. thesis, California Inst. Technol., Pasadena, CA (1987).

  10. Katsu, T., Kobayashi, H. & Fujita, Y. Biochim. biophys. Acta 860, 608–619 (1986).

    Article  CAS  Google Scholar 

  11. Ovchinnikov, Y. A. & Ivanov, V. T. in The Proteins 3rd edn Vol. 5 (eds Neurath, H. & Hill, R. L.) 307–642 (Academic, New York, 1982).

    Book  Google Scholar 

  12. Fung, D. C. Y. K. thesis, Harvard Univ., Cambridge, MA (1994).

  13. Block, S. M., Blair, D. F. & Berg, H. C. Nature 338, 514–517 (1989).

    Article  ADS  CAS  Google Scholar 

  14. Block, S. M., Blair, D. F. & Berg, H. C. Cytometry 12, 492–496 (1991).

    Article  CAS  Google Scholar 

  15. Block, S. M. & Berg, H. C. Nature 309, 470–472 (1984).

    Article  ADS  CAS  Google Scholar 

  16. Blair, D. F. & Berg, H. C. Science 242, 1678–1681 (1988).

    Article  ADS  CAS  Google Scholar 

  17. Armitage, J. P. & Evans, M. C. W. Biochim. biophys. Acta 806, 42–55 (1985).

    Article  CAS  Google Scholar 

  18. Ravid, S. & Eisenbach, M. J. Bact. 158, 222–230 (1984).

    CAS  PubMed  Google Scholar 

  19. Berg, H. C., Manson, M. D. & Conley, M. P. Symp. Soc. exp. Biol. 35, 1–31 (1982).

    CAS  PubMed  Google Scholar 

  20. Khan, S. & Berg, H. C. Cell 32, 913–919 (1983).

    Article  CAS  Google Scholar 

  21. Khan, S., Dapice, M. & Humayun, I. Biophys. J. 57, 779–796 (1990).

    Article  CAS  Google Scholar 

  22. Kami-ike, N., Kudo, S. & Hotani, H. Biophys. J. 60, 1350–1355 (1991).

    Article  CAS  Google Scholar 

  23. Meister, M., Lowe, G. & Berg, H. C. Cell 49, 643–650 (1987).

    Article  CAS  Google Scholar 

  24. Berg, H. C. & Turner, L. Biophys. J. 65, 2201–2216 (1993).

    Article  ADS  CAS  Google Scholar 

  25. Kashket, E. R. A. Rev. Microbiol. 39, 219–242 (1985).

    Article  CAS  Google Scholar 

  26. Ishihara, A., Segall, J. E., Block, S. M. & Berg, H. C. J. Bact. 155, 228–237 (1983).

    CAS  PubMed  Google Scholar 

  27. Berg, H. C. & Turner, L. Biophys. J. 58, 919–930 (1990).

    Article  ADS  CAS  Google Scholar 

  28. Brown, K. T. & Flaming, D. G. Advanced Micropipette Techniques for Cell Physiology (Wiley, Chichester, 1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fung, D., Berg, H. Powering the flagellar motor of Escherichia coli with an external voltage source. Nature 375, 809–812 (1995). https://doi.org/10.1038/375809a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/375809a0

  • Springer Nature Limited

This article is cited by

Navigation