Skip to main content
Log in

Locally layered convection inferred from dynamic models of the Earth's mantle

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

THE structure of convection in the mantle is still the subject of considerable debate. The now standard modelling of the convective flow as driven in a viscous mantle by density anomalies derived from seismic tomography has successfully explained the longest-wavelength (degree 2 to 8) geoid anomalies and provided important information concerning the viscosity structure of the mantle1–8. With this approach, however, the predicted response of surface topography to convective stresses (the 'dynamic topography') has a typical magnitude of several kilometres, which does not conform with observations9–11. A possible source of this discrepancy lies in the severe underestimation, by tomography, of density anomalies due to deflections of the boundary between the upper and lower mantle, at 660 km depth. Here we model the mantle flow implied by seismically derived density heterogeneities, using an empirical method to account for the 660-km boundary topography. The predicted dynamic (surface) topography thus obtained is significantly reduced, to values that conform with the observations; in addition, the 660-km boundary topography appears to have a strong influence on the computed mantle circulation, inducing local layering of the convective flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ricard, Y. & Vigny, C. J. geophys. Res. 94, 543–559 (1989).

    Google Scholar 

  2. Hager, B. H. & Richards, M. R. Phil. Trans. R. Soc. A328, 209–327 (1989).

    Article  ADS  Google Scholar 

  3. Forte, A. M. & Peltier, W. R. J. geophys. Res. 96, 20131–20159 (1991).

    Article  ADS  Google Scholar 

  4. King, S. D. & Masters, G. Geophys. Res. Lett. 19, 1551–1554 (1992).

    Article  ADS  Google Scholar 

  5. Zhang, S. & Christensen, U. Geophys. J. Int. 114, 531–547 (1993).

    Article  ADS  Google Scholar 

  6. Phipps Morgan, J. & Shearer, P. M. Nature 365, 506–511 (1993).

    Article  ADS  Google Scholar 

  7. Corrieu, V., Ricard, Y. & Froidevaux, C. Phys. Earth planet. Inter. 84, 3–13 (1994).

    Article  ADS  Google Scholar 

  8. Thoraval, C., Machetel, P. & Cazenave, A. Geophys. J. Int. 117, 566–573 (1994).

    Article  ADS  Google Scholar 

  9. Colin, P. & Fleitout, L. Geophys. Res. Lett. 17, 1961–1964 (1990).

    Article  ADS  Google Scholar 

  10. Cazenave, A. & Thoraval, C. Earth planet. Sci. Lett. 122, 207–219 (1994).

    Article  ADS  Google Scholar 

  11. Kido, M. & Seno, T. Geophys. Res. Lett. 21, 717–720 (1994).

    Article  ADS  Google Scholar 

  12. Tanimoto, T. & Zhang, Y. S. Geophys. Res. Lett. 17, 2405–2408 (1990).

    Article  ADS  Google Scholar 

  13. Cazenave, A., Souriau, A. & Dominh, K. Nature 18, 1257–1260 (1989).

    Google Scholar 

  14. Ito, E. & Katsura, T. Geophys. Res. Lett. 16, 425–428 (1989).

    Article  ADS  CAS  Google Scholar 

  15. Su, W. & Dziewonski, A. M. Nature 352, 121–126 (1991).

    Article  ADS  Google Scholar 

  16. Jordan, T. H. Phil. Trans. R. Soc. A301, 359–373 (1981).

    Article  ADS  CAS  Google Scholar 

  17. Chopelas, A. & Böehler, R. Geophys. Res. Lett. 19, 1347–1350 (1989).

    Article  ADS  Google Scholar 

  18. Dziewonski, A. M. & Anderson, D. L. Phys. Earth planet. Inter. 25, 297–356 (1981).

    Article  ADS  Google Scholar 

  19. Gripp, A. E. & Gordon, R. G. Geophys. Res. Lett. 17, 1109–1112 (1990).

    Article  ADS  Google Scholar 

  20. Van Der Hilst, R., Engdahl, R., Spakman, W. & Nolet, G. Nature 353, 37–43 (1991).

    Article  ADS  Google Scholar 

  21. Fukao, Y., Obayashi, M., Inoue, H. & Nenbai, M. J. geophys. Res. 97, 4809–4822 (1992).

    Article  ADS  Google Scholar 

  22. Shearer, P. M. Geophys. J. Int. 115, 878–904 (1993).

    Article  ADS  Google Scholar 

  23. Tanimoto, T. J. Phys. Earth 38, 493–509 (1990).

    Article  Google Scholar 

  24. Machetel, P. in Dynamics of Earth's Deep Interior and Earth Rotation (eds Le Mouël, J. L., Smylie, D. E. & Herring, T.) 167–179 (Geophys. Monogr. 72, Am. Geophysical Union, Washington DC, 1993).

    Google Scholar 

  25. Machetel, P., Thoraval, C. & Brunet, D. Phys. Earth planet. Inter. 88, 43–51 (1995).

    Article  ADS  Google Scholar 

  26. Machetel, P. & Weber, P. Nature 350, 55–57 (1991).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thoraval, C., Machetel, P. & Cazenave, A. Locally layered convection inferred from dynamic models of the Earth's mantle. Nature 375, 777–780 (1995). https://doi.org/10.1038/375777a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/375777a0

  • Springer Nature Limited

This article is cited by

Navigation