Skip to main content
Log in

A critical period for long-term potentiation at thalamocortical synapses

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

IN mammalian development, the refinement of topographical projections from the thalamus to the cortex is thought to arise through an activity-dependent process in which thalamic axons compete for cortical targets1,2. In support of this view, if activity is altered during a critical period in early development, normal connectivity is disrupted1,2. It has been proposed that synaptic connections are strengthened during development by correlated pre- and postsynaptic activity3,4, and a likely mechanism for this process would be N-methyl-D-aspartate (NMDA) receptor-dependent long-term potentiation (LTP)5,6. However, the evidence that LTP is involved in normal development remains inconclusive. We have examined LTP in the thalamocortical synapses that form whisker barrels in rat somatosensory cortex (SI). We report here that the period during which LTP can be induced matches closely the critical period during which the barrels can be modified by sensory perturbations. Moreover, the loss of susceptibility to LTP with age is accompanied by a decrease in NMDA receptor-mediated synaptic currents. These findings provide compelling evidence that LTP is important for the development of cortical circuitry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Goodman, C. S. & Shatz, C. J. Cell 72, 77–98 (1993).

    Article  Google Scholar 

  2. Shatz, C. J. Neuron 5, 745–756 (1990).

    Article  CAS  Google Scholar 

  3. Hebb, D. O. The Organization of Behaviour (Wiley, New York, 1949).

    Google Scholar 

  4. Stent, G. S. Proc. natn. Acad. Sci. U.S.A. 70, 997–1001 (1973).

    Article  ADS  CAS  Google Scholar 

  5. Collingridge, G. L. & Singer, W. Trends Neurosci. 11, 290–296 (1990).

    CAS  Google Scholar 

  6. Kandel, E. R. & O'Dell, T. J. Science 258, 243–245 (1992).

    Article  ADS  CAS  Google Scholar 

  7. Woolsey, T. A. & Van der Loos, H. Brain Res. 1, 205–242 (1970).

    Article  Google Scholar 

  8. Killackey, H. P. & Leshin, S. Brain Res. 86, 469–472 (1975).

    Article  CAS  Google Scholar 

  9. Chiaia, N. L., Fish, S. E., Bauer, W. R., Bennett-Clarke, C. A. & Rhoades, R. W. Devl Brain Res. 66, 244–250 (1992).

    Article  CAS  Google Scholar 

  10. Woolsey, T. A. & Wann, J. R. J. comp. Neurol. 170, 53–66 (1976).

    Article  CAS  Google Scholar 

  11. Schlaggar, B. L., Fox, K. & O'Leary, D. D. M. Nature 364, 623–626 (1993).

    Article  ADS  CAS  Google Scholar 

  12. Agmon, A. & Connors, B. W. Neuroscience 41, 365–379 (1991).

    Article  CAS  Google Scholar 

  13. Bear, M. F. & Kirkwood, A. Curr. Opin. Neurobiol. 3, 197–202 (1993).

    Article  CAS  Google Scholar 

  14. Hestrin, S. Nature 357, 686–689 (1992).

    Article  ADS  CAS  Google Scholar 

  15. Carmignoto, G. & Vicini, S. Science 258, 1007–1011 (1992).

    Article  ADS  CAS  Google Scholar 

  16. Bienenstock, E. L., Cooper, L. N. & Munro, P. W. J. Neurosci. 2, 32–48 (1982).

    Article  CAS  Google Scholar 

  17. Miller, K. D., Keller, J. B. & Stryker, M. P. Science 245, 605–615 (1989).

    Article  ADS  CAS  Google Scholar 

  18. Fox, K. & Daw, N. W. Trends Neurosci. 16, 116–122 (1993).

    Article  CAS  Google Scholar 

  19. Komatsu, Y., Fujii, K., Maeda, J., Sakaguchi, H. & Toyama, K. J. Neurophysiol. 59, 124–141 (1988).

    Article  CAS  Google Scholar 

  20. Mooney, R., Madison, D. V. & Shatz, C. J. Neuron 10, 815–825 (1993).

    Article  CAS  Google Scholar 

  21. Fox, K. J. Neurosci. 12, 1826–1838 (1992).

    Article  CAS  Google Scholar 

  22. Diamond, M. E., Huang, W. & Ebner, F. F. Science 265, 1885–1888 (1994).

    Article  ADS  CAS  Google Scholar 

  23. Watanabe, M., Inoue, Y., Sakimura, K. & Mishina, M. Neuroreports 3, 1138–1140 (1992).

    Article  CAS  Google Scholar 

  24. Williams, K., Russel, S. L., Shen, Y. M. & Molinoff, P. B. Neuron 10, 267–278 (1993).

    Article  CAS  Google Scholar 

  25. Monyer, H. et al. Science 256, 1217–1221 (1992).

    Article  ADS  CAS  Google Scholar 

  26. Kutsuwada, T. et al. Nature 358, 36–41 (1992).

    Article  ADS  CAS  Google Scholar 

  27. Malenka, R. C. & Nicoll, R. A. Trends Neurosci. 16, 521–527 (1993).

    Article  CAS  Google Scholar 

  28. Agmon, A. & O'Dowd, D. K. J. Neurophysiol. 68, 345–349 (1992).

    Article  CAS  Google Scholar 

  29. Mulkey, R. M. & Malenka, R. C. Neuron 9, 967–975 (1992).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Crair, M., Malenka, R. A critical period for long-term potentiation at thalamocortical synapses. Nature 375, 325–328 (1995). https://doi.org/10.1038/375325a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/375325a0

  • Springer Nature Limited

This article is cited by

Navigation