Skip to main content

Advertisement

Log in

Observational evidence for chemical ozone depletion over the Arctic in winter 1991–92

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

LONG-TERM depletion of ozone has been observed since the early 1980s in the Antarctic polar vortex, and more recently at mid-latitudes in both hemispheres, with most of the ozone loss occurring in the lower stratosphere1. Insufficient measurements of ozone exist, however, to determine decadal trends in ozone concentration in the Arctic winter. Several studies of ozone concentrations in the Arctic vortex have inferred that chemical ozone loss has occurred2–11; but because natural variations in ozone concentration at any given location can be large, deducing long-term trends from time series is fraught with difficulties. The approaches used previously have often been indirect, typically relying on relationships between ozone and long-lived tracers. Most recently Manney et al.11used such an approach, based on satellite measurements, to conclude that the observed ozone decrease of about 20% in the lower stratosphere in February and March 1993 was caused by chemical, rather than dynamical, processes. Here we report the results of a new approach to calculate chemical ozone destruction rates that allows us to compare ozone concentrations in specific air parcels at different times, thus avoiding the need to make assumptions about ozone/tracer ratios. For the Arctic vortex of the 1991-92 winter we find that, at 20 km altitude, chemical ozone loss occurred only between early January and mid February and that the loss is proportional to the exposure to sunlight. The timing and magnitude are broadly consistent with existing understanding of photochemical ozone-depletion processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Harris, N. R. P. et al. Scientific Assessment of Ozone Depletion: 1994 Ch. 1 (WMO Global Ozone Research and Monitoring Project, Report No. 37) (World Meteorological Organisation, Geneva, 1995).

  2. Hofmann, D. J. et al. Nature 340, 117–121 (1989).

    Article  ADS  CAS  Google Scholar 

  3. Schoeberi, M. R. et al. Geophys. Res. Lett. 17, 469–472 (1990).

    Article  ADS  Google Scholar 

  4. McKenna, D. S. et al. Geophys. Res. Lett. 17, 553–556 (1990).

    Article  ADS  Google Scholar 

  5. Hofmann, D. J. & Deshler, T. Nature 349, 300–305 (1991).

    Article  ADS  CAS  Google Scholar 

  6. Koike, M. et al. Geophys. Res. Lett. 18, 791–794 (1991).

    Article  ADS  CAS  Google Scholar 

  7. Kyrö, E. et al. J. geophys. Res. 97, 8083–8091 (1992).

    Article  ADS  Google Scholar 

  8. Proffitt M. H. et al. Science 261, 1150–1154 (1993).

    Article  ADS  CAS  Google Scholar 

  9. Braathen, G. O. et al. Geophys. Res. Lett. 21, 1407–1410 (1994).

    Article  ADS  CAS  Google Scholar 

  10. Larsen, N., Knudsen, B. M., Mikkelsen, I. St., Jørgensen, T. S. & Eriksen, P. Geophys. Res. Lett. 21, 1611–1614 (1994).

    Article  ADS  CAS  Google Scholar 

  11. Manney, G. L. et al. Nature 370, 429–434 (1994).

    Article  ADS  CAS  Google Scholar 

  12. Knudsen, B. M. & Carver, G. D. Geophys. Res. Lett. 21, 1199–1202 (1994).

    Article  ADS  Google Scholar 

  13. Kerr, J. B. et al. Atmosphere-Ocean 32, 685–716 (1994).

    Article  Google Scholar 

  14. Carver, G. D., Norton, W. A. & Pyle, J. A. Geophys. Res. Lett. 21, 1451–1454 (1994).

    Article  ADS  Google Scholar 

  15. Geleyn, J. F. & Hollingsworth, A. Beitr. Phys. Atmos. 52, 1–16 (1979).

    Google Scholar 

  16. Morcrette, J. J. Tech. Memo. 165 (Res. Dep. Eur. Cent. for Medium Range Weather Fore-casts, Reading, UK, 1989).

  17. Morcrette, J. J. J. geophys. Res. 96, 9121–9132 (1991).

    Article  ADS  Google Scholar 

  18. Lutman, E. R., Toumi, R., Jones, R. L., Lary, D. J. & Pyle, J. A. Geophys. Res. Lett. 21, 1415–1418 (1994).

    Article  ADS  CAS  Google Scholar 

  19. Müller, R. et al. Geophys. Res. Lett. 21, 1427–1430 (1994).

    Article  ADS  Google Scholar 

  20. Browell, E. V. et al. Science 261, 1155–1158 (1993).

    Article  ADS  CAS  Google Scholar 

  21. Salawitch, R. J. et al. Science 261, 1146–1149 (1993).

    Article  ADS  CAS  Google Scholar 

  22. Hoskins, B. J., Mclntyre, M. E. & Robinson, A. W. Q. Jl R. met. Soc. 111, 877–946 (1985).

    Article  ADS  Google Scholar 

  23. Rosenfield, J. E., Newman, P. A. & Schoeberl, M. R. J. geophys. Res. 99, 16677–16689 (1994).

    Article  ADS  Google Scholar 

  24. Strahan, S. E., Rosenfield, J. E., Loewenstein, M., Podolske, J. R. & Weaver, A. J. geophys. Res. 99, 20713–20723 (1994).

    Article  ADS  Google Scholar 

  25. Farman, J. C., O'Neill, A. & Swinbank, R. Geophys. Res. Lett. 21, 1195–1198 (1994).

    Article  ADS  Google Scholar 

  26. Naujokat, B., Petzoldt, K., Labitzke, K. (Met. Inst. report Beilage zur Berliner Wetterkarte, SO 18/92, Berlin, 1992).

  27. Newman, P. A. et al. Science 261, 1130–1158 (1993).

    Article  ADS  Google Scholar 

  28. Godin, S. et al. Geophys. Res. Lett. 21, 1335–1338 (1994).

    Article  ADS  Google Scholar 

  29. Waters, J. W. et al. Nature 362, 597–602 (1993).

    Article  ADS  CAS  Google Scholar 

  30. Geophys. Res. Lett. 21, 1189–1490 (1994).

  31. Geophys. Res. Lett. 20, 2499–2578 (1993).

  32. Science 261, 1130–1158 (1993).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

von der Gathen, P., Rex, M., Harris, N. et al. Observational evidence for chemical ozone depletion over the Arctic in winter 1991–92. Nature 375, 131–134 (1995). https://doi.org/10.1038/375131a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/375131a0

  • Springer Nature Limited

This article is cited by

Navigation