Skip to main content
Log in

A common neural code for frequency- and amplitude-modulated sounds

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

MOST naturally occurring sounds are modulated in amplitude or frequency; important examples include animal vocalizations and species-specific communication signals in mammals, insects, reptiles, birds and amphibians1-9. Deciphering the information from amplitude-modulated (AM) sounds is a well-understood process, requiring a phase locking of primary auditory afferents to the modulation envelopes10-12. The mechanism for decoding frequency modulation (FM) is not as clear because the FM envelope is flat (Fig. 1). One biological solution is to monitor amplitude fluctuations in frequency-tuned cochlear filters as the instantaneous frequency of the FM sweeps through the passband of these filters. This view postulates an FM-to-AM transduction whereby a change in frequency is transmitted as a change in amplitude13-14. This is an appealing idea because, if such transduction occurs early in the auditory pathway, it provides a neurally economical solution to how the auditory system encodes these important sounds. Here we illustrate that an FM and AM sound must be transformed into a common neural code in the brain stem. Observers can accurately determine if the phase of an FM presented to one ear is leading or lagging, by only a fraction of a millisecond, the phase of an AM presented to the other ear. A single intracranial image is perceived, the spatial position of which is a function of this phase difference.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Simmons, J. A. Science 203, 16–21 (1979).

    Article  ADS  CAS  Google Scholar 

  2. Bailey, W. J., Greenfield, M. D. & Shelly, T. E. J. Insect Behav. 6, 141–154 (1993).

    Article  Google Scholar 

  3. Dear, P. S., Simmons, J. A. & Fritz, J. Nature 364, 620–623 (1993).

    Article  ADS  CAS  Google Scholar 

  4. Coscia, E. M., Phillips, P. D. & Fentress, J. C. Bioacoustics 3, 275–293 (1991).

    Article  Google Scholar 

  5. Robisson, P., Aubin, T. & Bremond, J. Ethology 94, 279–290 (1993).

    Article  Google Scholar 

  6. Huber, F. & Thorson, J. Scient. Am. 253 (6), 60–68 (1985).

    Article  Google Scholar 

  7. Ryan, M. J. & Wilczynski, W. Science 240, 1786–1788 (1988).

    Article  ADS  CAS  Google Scholar 

  8. Klump, G. M. & Langemann, U. Adv. Bioacoust. 83, 353–359 (1992).

    Google Scholar 

  9. Brillet, C. & Paillette, M. Bioacoustics 3, 33–44 (1991).

    Article  Google Scholar 

  10. Smith, R. & Brachman, M. Hearing Res. 2, 123–133 (1980).

    Article  CAS  Google Scholar 

  11. Javel, E. J. acoust. Soc. Am. 68, 133–146 (1980).

    Article  ADS  CAS  Google Scholar 

  12. Schreiner, C. E. & Langner, G. in Auditory Function (eds Edelman, G. M., Gall, W. E. & Cowan, W. M.) 337–361 (Wiley, New York, 1988).

    Google Scholar 

  13. Zwicker, E. Acustica 2, 125–133 (1952).

    Google Scholar 

  14. Henning, G. B. J. acoust. Soc. Am. 68, 446–454 (1980).

    Article  ADS  CAS  Google Scholar 

  15. Masataka, N. Primates 24, 40–51 (1983).

    Article  Google Scholar 

  16. Shu, Z. J., Swindale, N. V. & Cynader, M. S. Nature 364, 721–723 (1993).

    Article  ADS  CAS  Google Scholar 

  17. Mendelson, J. R. & Cynader, M. S. Brain Res. 327, 331–335 (1985).

    Article  CAS  Google Scholar 

  18. Lord Rayleigh ( J. W. Strutt ) Nature 14, 32–33 (1876).

    Article  Google Scholar 

  19. Lord Rayleigh ( J. W. Strutt ) Phil. Mag. (Ser. 6) 13, 214–220 (1907).

    Article  Google Scholar 

  20. Henning, G. B., Hertz, B. G. & Broadbent, D. E. Vision Res. 15, 887–898 (1975).

    Article  CAS  Google Scholar 

  21. Carlson, C. R., Anderson, C. H. & Moeller, J. R. Invest. Ophthalmol. Vis. Sci. (suppl.), 165–166 (1980).

  22. Jamar, J. H. T., Kwakman, F. T. & Koenderink, J. J. Vision Res. 24, 243–249 (1984).

    Article  CAS  Google Scholar 

  23. Zhou, Y. & Baker, C. L. Jr Science 261, 98–101 (1993).

    Article  ADS  CAS  Google Scholar 

  24. Kuwada, S., Yin, T. C. T. & Wickesberg, R. E. Science 206, 586–588 (1979).

    Article  ADS  CAS  Google Scholar 

  25. Yin, T. C. T. & Chan, C. K. J. Neurophysiol. 64, 465–487 (1990).

    Article  CAS  Google Scholar 

  26. Carr, C. E. & Konishi, M. J. Neurosci. 10, 3227–3246 (1990).

    Article  CAS  Google Scholar 

  27. Whitfield, I. C. & Evans, E. F. J. Neurophysiol. 28, 655–672 (1965).

    Article  CAS  Google Scholar 

  28. Rees, A. & Moller, A. R. Hearing Res. 10, 301–330 (1983).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saberi, K., Haftert, E. A common neural code for frequency- and amplitude-modulated sounds. Nature 374, 537–539 (1995). https://doi.org/10.1038/374537a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/374537a0

  • Springer Nature Limited

This article is cited by

Navigation