Skip to main content
Log in

Effect of sample topology on the critical fields of mesoscopic superconductors

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

THE superconducting state of a material can be suppressed by either increasing the temperature (T) or applying a magnetic field (H). For bulk samples, the form of the H–T phase boundary is mainly determined by the material itself; sample topology can be neglected because the surface-to-volume ratio is small1. But for mesoscopic samples, this ratio becomes very large and nucleation of the superconducting state should depend strongly on the boundary conditions imposed by the sample shape, analogous to the role of the confining potential on the energy levels in the quantum-mechanical 'particle-in-a-box' problem2. Here we describe measurements of the superconducting H-T phase boundary of a range of mesoscopic aluminium structures (lines, squares and square rings) which show clearly the effect of sample topology. The H-T phase boundaries determined experimentally are in excellent agreement with theoretical calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. de Gennes, P. G. Superconductivity in Metals and Alloys (Addison-Wesley, New York, 1989).

    MATH  Google Scholar 

  2. Merzbacher, E. Quantum Mechanics (Wiley, New York, 1961).

    MATH  Google Scholar 

  3. Abrikosov, A. A. Fundamentals of the Theory of Metals (North-Holland, Amsterdam, 1988).

    Google Scholar 

  4. Saint-James, D. Phys. Lett. 15, 13–15 (1965).

    Article  ADS  Google Scholar 

  5. Pannetier, B. in Quantum Coherence in Mesoscopic Systems (ed. Kramer, B.) 457–484 (Plenum, New York, 1991).

    Book  Google Scholar 

  6. Little, W. A. & Parks, R. D. Phys. Rev. Lett. 9, 9–13 (1962).

    Article  ADS  Google Scholar 

  7. Tinkham, M. Introduction to Superconductivity (McGraw-Hill, New York, 1975).

    Google Scholar 

  8. Dingle, R. B. Proc. Roy. Soc. A212, 47–65 (1952).

    ADS  CAS  Google Scholar 

  9. Welker, H., Bayer S. B. Akad. Wiss. 14, 115–118 (1938).

    Google Scholar 

  10. Groff, R. P. & Parks, R. D. Phys. Rev. 176, 567–578 (1968).

    Article  ADS  Google Scholar 

  11. Tinkham, M. Phys. Rev. 129, 2413–2422 (1963).

    Article  ADS  Google Scholar 

  12. Santhanam, P., Chi, C. C., Wind, S. J., Brady, M. J. & Bucchignano, J. J. Phys. Rev. Lett. 66, 2254–2258 (1991).

    Article  ADS  CAS  Google Scholar 

  13. Vloeberghs, H., Moshchalkov, V. V., Van Haesendonck, C., Jonckheere, R. & Bruynseraede, Y. Phys. Rev. Lett. 69, 1268–1272 (1992).

    Article  ADS  CAS  Google Scholar 

  14. Moshchalkov, V. V., Gielen, L., Neuttiens, G., Van Haesendonck, C. & Bruynseraede, Y. Phys. Rev. B49, 15412–15416 (1994).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moshchalkov, V., Gielen, L., Strunk, C. et al. Effect of sample topology on the critical fields of mesoscopic superconductors. Nature 373, 319–322 (1995). https://doi.org/10.1038/373319a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/373319a0

  • Springer Nature Limited

This article is cited by

Navigation