Skip to main content

Advertisement

Log in

The role of deep roots in the hydrological and carbon cycles of Amazonian forests and pastures

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

DEFORESTATION and logging transform more forest in eastern and southern Amazonia than in any other region of the world1–3. This forest alteration affects regional hydrology4–11 and the global carbon cycle12–14, but current analyses of these effects neglect an important deep-soil link between the water and carbon cycles. Using rainfall data, satellite imagery and field studies, we estimate here that half of the closed forests of Brazilian Amazonia depend on deep root systems to maintain green canopies during the dry season. Evergreen forests in northeastern Pará state maintain evapotranspiration during five-month dry periods by absorbing water from the soil to depths of more than 8m. In contrast, although the degraded pastures of this region also contain deep-rooted woody plants, most pasture plants substantially reduce their leaf canopy in response to seasonal drought, thus reducing dry-season evapotranspiration and increasing potential subsurface runoff relative to the forests they replace. Deep roots that extract water also provide carbon to the soil. The forest soil below 1 m depth contains more carbon than does above-ground biomass, and as much as 15% of this deep-soil carbon turns over on annual or decadal timescales. Thus, forest alteration that affects depth distributions of carbon inputs from roots may also affect net carbon storage in the soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. FAO Forestry Pap. 112 (FAO, Rome, 1993).

  2. Fearnside, P. M. Ambio 22, 537–545 (1993).

    Google Scholar 

  3. Skole, D. & Tucker, C. Science 260, 1905–1910 (1993).

    Article  ADS  CAS  Google Scholar 

  4. Chahine, M. T. Nature 359, 373–380 (1992).

    Article  ADS  Google Scholar 

  5. Dickinson, R. E. & Henderson-Sellers, A. Q. Jl R. met. Soc. 114, 439–462 (1988).

    Article  ADS  Google Scholar 

  6. Victoria, R. L., Martinelli, L. A., Mortatti, J. & Richey, J. Ambio 20, 384–387 (1991).

    Google Scholar 

  7. Shuttleworth, W. J. et al. J. Hydrol. 129, 71–85 (1991).

    Article  ADS  Google Scholar 

  8. Nobre, C., Sellers, P. & Shukla, J. J. Clim. 4, 957–988 (1991).

    Article  ADS  Google Scholar 

  9. Shukla, J., Nobre, C. A. & Sellers, P. Science 247, 1322–1325 (1990).

    Article  ADS  CAS  Google Scholar 

  10. Lean, J. & Warrilow, D. A. Nature 342, 411–413 (1989).

    Article  ADS  Google Scholar 

  11. Salati, E., Dall'Olio, A., Gat, J. & Natsui, E. Wat. Resour. Res. 15, 1250–1258 (1979).

    Article  ADS  CAS  Google Scholar 

  12. Houghton, J. T., Jenkins, G. J. & Elphraums, J. J. (eds) Climate Change. The IPCC Scientific Assessment (Cambridge Univ. Press, New York, 1990).

  13. Houghton, J. T., Callander, B. A. & Varney, S. K. (eds) The Supplementary Report to the IPCC Scientific Assessment (Cambridge Univ. Press, New York, 1992).

  14. Houghton, R. A. Clim. Change 19, 99–118 (1991).

    Article  ADS  CAS  Google Scholar 

  15. Uhl, C., Buschbacher, R. & Serrão, E. A. S. J. Ecol. 76, 663–681 (1988).

    Article  Google Scholar 

  16. Nepstad, D. C., Uhl, C. & Serrão, E. A. S. Ambio 20, 248–255 (1991).

    Google Scholar 

  17. Mattos, M. M. & Uhl, C. Wld Dev. 22, 145–158 (1994).

    Google Scholar 

  18. Richter, D. D. & Babbar, L. I. Adv. Ecol. Res. 21, 315–389 (1991).

    Article  Google Scholar 

  19. Nepstad, D. C. thesis, Yale Univ. (1989).

  20. Potter, C. S. et al. Globl Biogeochem. Cycles 74, 811–841 (1993).

    Article  ADS  Google Scholar 

  21. Sombroek, W., Nachtergaele, F. O. & Hebel, A. Ambio 22, 417–426 (1993).

    Google Scholar 

  22. Trumbore, S. E. Globl Biogeochem. Cycles 7, 275–290 (1993).

    Article  ADS  CAS  Google Scholar 

  23. Veldkamp, E. Soil Sci. Soc. Am. J. 58, 175–180 (1994).

    Article  ADS  Google Scholar 

  24. Lugo, A. E. & Brown, S. Pl. Soil 149, 27–41 (1993).

    Article  CAS  Google Scholar 

  25. Detwiler, R. P. Biogeochemistry 2, 67–93 (1986).

    Article  CAS  Google Scholar 

  26. Fisher, M. J. et al. Nature 371, 236–238 (1994).

    Article  ADS  Google Scholar 

  27. Poels, R. I. H. Soils, Water and Nutrients in a Forest Ecosystem in Surinam (Agric. Univ., Waageningen, The Netherlands, 1987).

    Google Scholar 

  28. Global Vegetation Index User's Guide (ed. Kidwell, K. B.) (NOAA, Washington DC, 1990).

  29. Stone, T. A., Schlesinger, P., Houghton, R. A. & Woodwell, G. M. Photogram. Eng. and Rem. Sens. 60, 541–551 (1994).

    Google Scholar 

  30. Uhl, C., Kauffman, J. B. & Silva, E. D. Ciência Hoje 65, 25–32 (1990).

    Google Scholar 

  31. Topp, G. C., Davis, J. L. & Annan, A. P. Wat. Resour. Res. 16, 574–582 (1980).

    Article  ADS  Google Scholar 

  32. Topp, G. C. & Davis, J. L. Soil Sci. Soc. Am. J. 49, 19–24 (1985).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nepstad, D., de Carvalho, C., Davidson, E. et al. The role of deep roots in the hydrological and carbon cycles of Amazonian forests and pastures. Nature 372, 666–669 (1994). https://doi.org/10.1038/372666a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/372666a0

  • Springer Nature Limited

This article is cited by

Navigation