Skip to main content
Log in

Molecular determinants of voltage-dependent inactivation in calcium channels

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

VOLTAGE-DEPENDENT Ca2+ channels respond to membrane depolarization by conformational changes that control channel opening and eventual closing by inactivation1–3. The kinetics of inactivation differ considerably between types of Ca2+ channels1–8 and are important in determining the amount of Ca2+ entry during electrical activity and its resulting impact on diverse cellular events3. The most intensively characterized forms of inacti-vation in potassium9–10 and sodium channels11–13 involve pore block by a tethered plug14. In contrast, little is known about the molecu-lar basis of Ca2+-channel inactivation. We studied the molecular mechanism of inactivation of voltage-gated calcium channels by making chimaeras from channels with different inactivation rates. We report here that the amino acids responsible for the kinetic differences are localized to membrane-spanning segment S6 of the first repeat of the ai subunit (IS6), and to putative extracellular and cytoplasmic domains flanking IS6. Involvement of this region in Ca2+ -channel inactivation was unexpected and raises interesting comparisons with Na+ channels, where the III-IV loop is a critical structural determinant. Ca2+ -channel inactivation has some features that resemble C-type inactivation of potassium channels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Carbone, E. & Swandulla, D. Prog. Biophys. molec. Biol. 54, 31–58 (1989).

    Article  CAS  Google Scholar 

  2. Reuter, H. A. Rev. Physiol. 46, 473–484 (1984).

    Article  CAS  Google Scholar 

  3. Hille, B. Ionic Channels of Excitable Membranes (Sinauer, Sunderland, MA, 1992).

    Google Scholar 

  4. Armstrong, C. M. & Matteson, D. R. Science 227, 65–67 (1985).

    Article  ADS  CAS  Google Scholar 

  5. Nowycky, M. C., Fox, A. P. & Tsien, R. W. Nature 316, 440–443 (1985).

    Article  ADS  CAS  Google Scholar 

  6. Bean, B. A. Rev. Physiol. 51, 367–384 (1989).

    Article  CAS  Google Scholar 

  7. Llinas, R. et al. Trends Neurosci. 15, 351–355 (1992).

    Article  CAS  Google Scholar 

  8. Ellinor, P. T. et al. Nature 363, 455–458 (1993).

    Article  ADS  CAS  Google Scholar 

  9. Hoshi, T., Zagotta, W. N. & Aldrich, R. W. Science 250, 533–538 (1990).

    Article  ADS  CAS  Google Scholar 

  10. Demo, S. D. & Yellen, G. Neuron 7, 743–753 (1991).

    Article  CAS  Google Scholar 

  11. Stuhmer, W. et al. Nature 339, 597–603 (1989).

    Article  ADS  CAS  Google Scholar 

  12. Vassilev, P., Scheuer, T. & Catterall, W. A. Proc. natn. Acad. Sci. U.S.A. 86, 8147–8151 (1989).

    Article  ADS  CAS  Google Scholar 

  13. Catterall, W. A. Trends Neurosci. 16, 500–506 (1993).

    Article  CAS  Google Scholar 

  14. Armstrong, C. M. & Bezanilla, F. J. gen. Physiol. 70, 567–590 (1977).

    Article  CAS  Google Scholar 

  15. Mori, Y. et al. Nature 350, 398–402 (1991).

    Article  ADS  CAS  Google Scholar 

  16. Mikami, A. et al. Nature 340, 230–233 (1989).

    Article  ADS  CAS  Google Scholar 

  17. Eckert, R. & Chad, J. D. Prog. Biophys. molec. Biol. 44, 215–267 (1984).

    Article  CAS  Google Scholar 

  18. Lacerda, A. E. et al. Nature 352, 527–530 (1991).

    Article  ADS  CAS  Google Scholar 

  19. Singer, D. et al. Science 253, 1553–1557 (1991).

    Article  ADS  CAS  Google Scholar 

  20. Pragnell, M. et al. Nature 368, 67–70 (1994).

    Article  ADS  CAS  Google Scholar 

  21. Hoshi, T., Zagotta, W. N. & Aldrich, R. W. Neuron 7, 547–556 (1991).

    Article  CAS  Google Scholar 

  22. Kirsch, G. E. et al. Biophys. J. 62, 136–143 (1992).

    Article  ADS  CAS  Google Scholar 

  23. Choi, K. L., Aldrich, R. W. & Yellen, G. Proc. natn. Acad. Sci. U.S.A. 88, 5092–5095 (1991).

    Article  ADS  CAS  Google Scholar 

  24. Lopez-Barneo, J. et al. Receptors Channels 1, 61–71 (1993).

    CAS  PubMed  Google Scholar 

  25. Yellen, G. et al. Biophys. J. 66, 1068–1075 (1994).

    Article  ADS  CAS  Google Scholar 

  26. Rojas, C. V. et al. Nature 354, 387–389 (1991).

    Article  ADS  CAS  Google Scholar 

  27. Cannon, S. C. & Strittmatter, S. M. Neuron 10, 317–326 (1993).

    Article  CAS  Google Scholar 

  28. Strichartz, G., Rando, T. & Wang, G. K. A. Rev. Neurosci. 10, 237–267 (1987).

    Article  CAS  Google Scholar 

  29. Thomsen, W. J. & Catterall, W. A. Proc. natn. Acad. Sci. U.S.A. 86, 10161–10165 (1989).

    Article  ADS  CAS  Google Scholar 

  30. Williams, M. E. et al. Science 257, 390–395 (1992).

    Article  ADS  Google Scholar 

  31. Soong, T. W. et al. Science 260, 1133–1136 (1993).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, JF., Ellinor, P., Aldrich, R. et al. Molecular determinants of voltage-dependent inactivation in calcium channels. Nature 372, 97–100 (1994). https://doi.org/10.1038/372097a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/372097a0

  • Springer Nature Limited

This article is cited by

Navigation