Skip to main content
Log in

Photothermal spectroscopy with femtojoule sensitivity using a micromechanical device

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

WHEN a material absorbs a photon, a fraction of the energy may be transformed into heat. A measurement of photothermal heating as a function of wavelength can provide an absorption spectrum of the material. We have recently1,2 developed a micromechanical sensor capable of detecting heat changes of the order of picojoules (10-12 J). The instrument incorporates a bilayer cantilever of micrometre dimensions which bends in response to heating. Here we show that this device can be used for photothermal spectroscopy with a power sensitivity of 100 pW—two orders of magnitude better than the sensitivity of conventional photothermal deflection spectroscopy3. The small size of the sensor allows picogram quanti-ties of material to be studied, opening up the possibility of spectro-scopic studies on individual cells and bacteria. Being based on silicon technology, the sensor should be compatible with micro-electronic circuitry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gimzewski, J. K., Gerber, Ch., Meyer, E. & Schlittler, R. R. Chem. Phys. Lett. 217, 589–594 (1994).

    Article  ADS  CAS  Google Scholar 

  2. Meyer, E., Gimzewski, J. K., Gerber, Ch. & Schlittler, R. R. in The Ultimate Limits of Fabrication and Measurement (eds Gimzewski, J. K. & Welland, M. E.) (NATO ARW, Kluwer, Dordrecht, in the press).

  3. Amer, N. M. & Jackson, W. B. in Semiconductors and Semimetals Vol. 21 (ed. Pankove, J. K.) 83–112 (Academic, Orlando, 1984).

    Google Scholar 

  4. Coufal, H. Appl. Phys. Lett. 44, 59–61 (1984).

    Article  ADS  CAS  Google Scholar 

  5. Marti, O. et al. Ultramicroscopy 42–44, 345–350 (1992).

    Article  Google Scholar 

  6. Allegrini, M. et al. Ultramicroscopy 42–44, 371–378 (1992).

    Article  Google Scholar 

  7. Meyer, G. & Amer, N. M. Appl. Phys. Lett. 53, 1045–1047 (1988).

    Article  ADS  Google Scholar 

  8. Street, R. A. Hydrogenated Amorphous Silicon (Cambridge Univ. Press, 1991).

    Book  Google Scholar 

  9. Fournier, D. & Claude-Boccara, A. in Photoacoustic and Thermal Wave Phenomena in Semiconductors 237–255 (ed. Mandelis, A.) (Elsevier, New York, 1987).

    Google Scholar 

  10. Heer, C. V. Statistical Mechanics, Kinetic Theory and Stochastic Processes (Academic, Orlando. 1972).

    Google Scholar 

  11. Stuckless, T., Al-Sarraf, N., Wartnaby, C. & King, D. A. J. chem. Phys. 99, 2202–2212 (1993).

    Article  ADS  CAS  Google Scholar 

  12. Gust, D., Moore, T. A. & Moore, A. L. Accts chem. Res. 26, 198–205 (1993).

    Article  CAS  Google Scholar 

  13. James, A. M. (ed.) Thermal and Energetic Studies of Cellular Biological Systems (Inst. of Physics, Bristol, 1987).

  14. Pohl, D. Adv. opt. Electron Microsc. 12, 243–312 (1991).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barnes, J., Stephenson, R., Welland, M. et al. Photothermal spectroscopy with femtojoule sensitivity using a micromechanical device. Nature 372, 79–81 (1994). https://doi.org/10.1038/372079a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/372079a0

  • Springer Nature Limited

This article is cited by

Navigation