Skip to main content
Log in

Crystal structure of an RNA bacteriophage coat protein–operator complex

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

THE RNA bacteriophage MS2 is a convenient model system for the study of protein–RNA interactions. The MS2 coat protein achieves control of two distinct processes—sequence-specific RNA encapsidation and repression of replicase translation—by binding to an RNA stem–loop structure of 19 nucleotides containing the initiation codon of the replicase gene. The binding of a coat protein dimer to this hairpin shuts off synthesis of the viral replicase1, switching the viral replication cycle to virion assembly rather than continued replication. The operator fragment alone can trigger self-assembly of the phage capsid at low protein concentrations and a complex of about 90 RNA operator fragments per protein capsid has been described2. We report here the crystal structure at 3.0 Å resolution of a complex between recombinant MS2 cap-sids and the 19-nucleotide RNA fragment. It is the first example of a structure at this resolution for a sequence-specific protein-RNA complex apart from the transfer RNA synthetase complexes3–5. The structure shows sequence-specific interactions between conserved residues on the protein and RNA bases essential for binding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Witherell, G. W., Gott, J. M. & Uhlenbeck, O. C. Progr. Nucleic. Acid Res. molec. Biol. 40, 185–220 (1991).

    Article  CAS  Google Scholar 

  2. Beckett, D. & Uhlenbeck, O. C. J. molec. Biol. 204, 927–938 (1988).

    Article  CAS  Google Scholar 

  3. Rould, M. A., Perona, J. J. & Steitz, T. A. Nature 352, 213–218 (1991).

    Article  ADS  CAS  Google Scholar 

  4. Ruff, M. et al. Science 252, 1682–1689 (1991).

    Article  ADS  CAS  Google Scholar 

  5. Cavarelli, J., Rees, B., Ruff, M., Thierry, J.-C. & Moras, D. Nature 362, 181–184 (1993).

    Article  ADS  CAS  Google Scholar 

  6. Valegård, K., Liljas, L., Fridborg, K. & Unge, T. Nature 345, 36–41 (1990).

    Article  ADS  Google Scholar 

  7. Romaniuk, P. J., Lowary, P. T., Wu, H. N., Stormo, G. & Uhlenbeck, O. C. Biochemistry 26, 1563–1568 (1987).

    Article  CAS  Google Scholar 

  8. Talbot, S. J., Goodman, S., Bates, S. R. E., Fishwick, C. W. G. & Stockley, P. G. Nucleic Acids Res. 18, 3521–3528 (1990).

    Article  CAS  Google Scholar 

  9. Peabody, D. S. EMB0 J. 12, 595–600 (1993).

    Article  CAS  Google Scholar 

  10. Stockley, P. G. et al. Biochem. Soc. Trans. 21, 627–633 (1993).

    Article  CAS  Google Scholar 

  11. Peabody, D. S. Nucleic Acids Res. 17, 6017–6027 (1989).

    Article  CAS  Google Scholar 

  12. Lim, F., Spingola, M. & Peabody, D. S. J. biol. Chem. 269, 9006–9010 (1994).

    CAS  PubMed  Google Scholar 

  13. Harrison, S. C., Olson, A. J., Schutt, C. E., Winkler, F. K. & Bricogne, G. Nature 276, 368–373 (1978).

    Article  ADS  CAS  Google Scholar 

  14. Abad-Zapatero, C. et al. Nature 286, 33–39 (1980).

    Article  ADS  CAS  Google Scholar 

  15. Hogle, J. M., Maeda, A. & Harrison, S. C. J. molec. Biol. 191, 625–638 (1986).

    Article  CAS  Google Scholar 

  16. Hosur, M. V. et al. Prot. Struct. Fund. Genet. 2, 167–176 (1987).

    Article  CAS  Google Scholar 

  17. Liddington, R. et al. Nature 354, 278–284 (1991).

    Article  ADS  CAS  Google Scholar 

  18. Sorger, P. K., Stockley, P. G. & Harrison, S. C. J. molec. Biol. 191, 639–658 (1986).

    Article  CAS  Google Scholar 

  19. Goimohammadi, R., Valegård, K., Fridborg, K. & Liljas, L. J. molec. Biol. 234, 620–639 (1993).

    Article  Google Scholar 

  20. Beckett, D., Wu, H.-N. & Uhlenbeck, O. C. J. molec. Biol. 204, 939–947 (1988).

    Article  CAS  Google Scholar 

  21. Mastico, R. A., Talbot, S. J. & Stockley, P. G. J. gen. Virol. 74, 541–542 (1993).

    Article  CAS  Google Scholar 

  22. Usman, N., Ogilvie, K. K., Tiang, M.-Y. & Cedergren, R. G. J. Am. chem. Soc. 109, 7845–7854 (1987).

    Article  CAS  Google Scholar 

  23. Murray, J. B., Collier, A. K. & Arnold, J. R. P. Analyt. Biochem. 218, 177–184 (1994).

    Article  CAS  Google Scholar 

  24. Jones, T. A. in CCP4 Study Weekend 1992; Molecular Replacement (eds, Dodson, E. J., Gover, S. & Wolf, W.) 91–105 (Daresbury Laboratory, UK, 1992).

    Google Scholar 

  25. Jones, T. A., Zou, J.-Y., Cowan, S. W. & Kjeldgaard, M. Acta crystallogr. A47, 110–119 (1991).

    Article  CAS  Google Scholar 

  26. Brünger, A. T. XPLOR Manual (Yale University, New Haven, CT, 1990).

    Google Scholar 

  27. Brünger, A. T. Nature 355, 472–473 (1992).

    Article  ADS  Google Scholar 

  28. Kraulis, P. J. J. appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Valegård, K., Murray, J., Stockley, P. et al. Crystal structure of an RNA bacteriophage coat protein–operator complex. Nature 371, 623–626 (1994). https://doi.org/10.1038/371623a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/371623a0

  • Springer Nature Limited

This article is cited by

Navigation