Skip to main content
Log in

Rapid evolution of a protein in vitro by DNA shuffling

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

DNA SHUFFLING is a method for in vitro homologous recombination of pools of selected mutant genes by random fragmentation and polymerase chain reaction (PCR) reassembly1. Computer simulations called genetic algorithms2–4have demonstrated the importance of iterative homologous recombination for sequence evolution. Oligonucleotide cassette mutagenesis5–11 and error-prone PCR12,13 are not combinatorial and thus are limited in searching sequence space1,14. We have tested mutagenic DNA shuffling for molecular evolution14–18 in a p-lactamase model system9,19. Three cycles of shuffling and two cycles of backcrossing with wild-type DNA, to eliminate non-essential mutations, were each followed by selection on increasing concentrations of the antibiotic cefotaxime. We report here that selected mutants had a minimum inhibitory concentration of 640 μg ml-1, a 32,000-fold increase and 64-fold greater than any published TEM-1 derived enzyme. Cassette mutagenesis and error-prone PCR resulted in only a 16-fold increase9.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stemmer, W. P. C. Proc. natn. Acad. Sci. U.S.A. (in the press).

  2. Holland, J. H. Scient. Am. 267, 66–72 (1992).

    Article  Google Scholar 

  3. Holland, J. H. Adaptation in Natural and Artificial Systems 2nd edn (MIT Press, Cambridge, 1992).

    Google Scholar 

  4. Arkin, A. & Youvan, D. C. Proc. natn. Acad. Sci. U.S.A. 89, 7811–7815 (1992).

    Article  ADS  CAS  Google Scholar 

  5. Delagrave, S. & Youvan, D. C. Biotechnology 11, 1548–1552 (1993).

    CAS  PubMed  Google Scholar 

  6. Palzkill, T. & Botstein, D. J. Bact. 174, 5237–5243 (1992).

    Article  CAS  Google Scholar 

  7. Oliphant, A. R., Nussbaum, A. L. & Struhl, K. Gene 44, 177–183 (1986).

    Article  CAS  Google Scholar 

  8. Hermes, J. D., Blacklow, S. C. & Knowles, J. R. Proc. natn. Acad. Sci. U.S.A. 87, 696–700 (1990).

    Article  ADS  CAS  Google Scholar 

  9. Leung, D. W., Chen, E. & Goeddel, D. V. Technique 1, 11–15 (1989).

    Google Scholar 

  10. Caldwell, R. C. & Joyce, G. F. PCR Meth. Applic. 2, 28–33 (1992).

    Article  Google Scholar 

  11. Kauffman, S. A. The Origins of Order (Oxford Univ. Press, New York, 1993).

    Google Scholar 

  12. Kauffman, S. A. J. theor. Biol. 157, 1–7 (1992).

    Article  CAS  Google Scholar 

  13. Bartel, D. P. & Szostak, J. W. Science 261, 1411–1418 (1993).

    Article  ADS  CAS  Google Scholar 

  14. Tuerk, C. & Gold, L. Science 249, 505–510 (1990).

    Article  ADS  CAS  Google Scholar 

  15. Joyce, G. F. Scient. Am. 267, 90–97 (1992).

    Article  CAS  Google Scholar 

  16. Jacoby, G. A. & Medeiros, A. A. Antimicrob. Ag. Chemother. 35, 1697–1704 (1991).

    Article  CAS  Google Scholar 

  17. Collatz, E., Labia, R. & Gutmann, L. Molec. Microbiol. 4, 1615–1620 (1990).

    Article  CAS  Google Scholar 

  18. Philippon, A., Labia, R. & Jacoby, G. Antimicrob. Ag. Chemother. 33, 1131–1136 (1989).

    Article  CAS  Google Scholar 

  19. McCafferty, J., Griffiths, A. D., Winter, G. & Chiswell, D. J. Nature 348, 552–554 (1990).

    Article  ADS  CAS  Google Scholar 

  20. Huse, W. D., Sastry, L., Iverson, S. A. & Kang, A. S. Science 246, 1275–1278 (1989).

    Article  ADS  CAS  Google Scholar 

  21. Watson, N. Gene 70, 399–403 (1988).

    Article  CAS  Google Scholar 

  22. Ambler, R. P. et al. Biochem. J. 276, 269–272 (1991).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stemmer, W. Rapid evolution of a protein in vitro by DNA shuffling. Nature 370, 389–391 (1994). https://doi.org/10.1038/370389a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/370389a0

  • Springer Nature Limited

This article is cited by

Navigation