Skip to main content
Log in

Importance of vegetation in removing polycyclic aromatic hydrocarbons from the atmosphere

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

ANTHROPOGENIC semi-volatile organic compounds such as polycyclic aromatic hydrocarbons (PAHs) are highly lipophilic (which makes them likely to accumulate in animal tissue), and some are carcinogenic or mutagenic1. Although such compounds are known to accumulate in vegetation2–5, little is known about the quantitative role played by vegetation in removing them from the atmosphere. We have developed a mass-balance model for PAHs for the northeast of the United States, based on measurements of PAHs in soil and vegetation from Bloomington, Indiana, and published values for PAH concentrations and fluxes in air, water, sediments and soils. Our model shows that 44±18% of the PAHs emitted into the atmosphere from sources in this region are removed by vegetation. Although the equilibrium between the atmosphere and vegetation depends on ambient temperature6, we believe that most of the PAHs absorbed by vegetation at the end of the growing season are incorporated into the soil7,8 and permanently removed from the atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Evaluation and Estimation of Potential Carcinogenic Risks of Polynuclear Aromatic Hydrocarbons (Office of Research and Development, US Environmental Protection Agency, Washington DC, 1985).

  2. Jones, K. C., Sanders, G., Wild, S. R., Burnett, V. & Johnson, A. E. Nature 356, 137–139 (1992).

    Article  ADS  CAS  Google Scholar 

  3. Eriksson, G., Hensen, S., Kylin, H. & Strachan, W. Nature 341, 42–44 (1989).

    Article  ADS  CAS  Google Scholar 

  4. Calamari, D. et al. Envir. Sci. Technol. 25, 1489–1495 (1991).

    Article  ADS  CAS  Google Scholar 

  5. Hermanson, M. H. & Hites, R. A. Envir. Sci. Technol. 24, 666–671 (1990).

    Article  ADS  CAS  Google Scholar 

  6. Simonich, S. L. & Hites, R. A. Envir. Sci. Technol. 28, 939–943 (1994).

    Article  ADS  CAS  Google Scholar 

  7. Matzner, E. Wat. Air & Soil Pollut. 21, 425–434 (1984).

    Article  ADS  CAS  Google Scholar 

  8. Smith, W. H., Hale, R. C., Greaves, J. & Huggett, R. J. Envir. Sci. Technol. 27, 2244–2246 (1993).

    Article  ADS  CAS  Google Scholar 

  9. Ramdahl, T., Alfheim, I. & Bjorseth, A. in Mobile Source Emissions including Polycyclic Organic Species (eds Rondia, D., Cooke, M. & Haroz, R. K.) 277–298 (Reidel, Dordrecht, 1983).

    Book  Google Scholar 

  10. Schulze, E.D. in Encyclopedia of Plant Physiology Vol. 12 B (eds Lange, O. L., Osmond, C. B. & Ziegler, H.) 615–676 (Springer, Berlin, 1982).

    Google Scholar 

  11. Jarvis, P. G. in Physiological Processes Limiting Plant Productivity (ed. Johnson, C. B.) 81–107 (Butterworths, London, 1981).

    Book  Google Scholar 

  12. Redelfs, M. S., Stone, L. R., Kanemasu, E. T. & Kirkham, M. B. Argon, J. 79, 254–259 (1987).

    Google Scholar 

  13. Menzie, C. A., Potocki, B. B. & Santodonato, J. Envir. Sci. Technol. 26, 1278–1284 (1992).

    Article  ADS  CAS  Google Scholar 

  14. Jones, K. C. et al. Envir. Sci. Technol. 23, 95–101 (1989).

    Article  ADS  CAS  Google Scholar 

  15. Harrison, R. M. & Johnston, W. R. Sci. tot. Envir. 46, 121–135 (1985).

    Article  CAS  Google Scholar 

  16. McVeety, B. D. & Hites, R. A. Atmos. Envir. 22, 511–536 (1988).

    Article  CAS  Google Scholar 

  17. Gschwend, P. M. & Hites, R. A. Geochim. cosmochim. Acta. 45, 2359–2367 (1981).

    Article  ADS  CAS  Google Scholar 

  18. Christensen, E. R. & Zhang, X. Envir. Sci. Technol. 27, 139–146 (1993).

    Article  ADS  CAS  Google Scholar 

  19. Baker, J. E., Eisenrich, S. J. & Eadie, B. J. Envir. Sci. Technol. 25, 500–509 (1991).

    Article  ADS  CAS  Google Scholar 

  20. Beymer, T. D. & Hites, R. A. Envir. Sci. Technol. 22, 1311–1319 (1988).

    Article  ADS  Google Scholar 

  21. Kamens, R. M., Guo, J., Guo, Z. & McDow, S. R. Atmos. Envir. 24A, 1161–1173 (1990).

    Article  ADS  CAS  Google Scholar 

  22. Alebic-Juretic, A., Cvitas, T. & Klasinc, L. Envir. Sci. Technol. 24, 62–66 (1990).

    Article  ADS  CAS  Google Scholar 

  23. Pitts, J. N. Jr et al. Chemosphere 15, 675–685 (1986).

    Article  ADS  CAS  Google Scholar 

  24. Kwok, E. S. C., Harger, W. P., Arey, J. & Atkinson, R. Envir. Sci. Technol. 28, 521–527 (1994).

    Article  ADS  CAS  Google Scholar 

  25. Siak, J., Chan, T. L., Gibson, T. L. & Wolff, G. T. Atmos. Envir. 19, 369–376 (1985).

    Article  CAS  Google Scholar 

  26. Schroeder, W. H. & Lane, D. A. Envir. Sci. Technol. 22, 240–246 (1988).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simonich, S., Hites, R. Importance of vegetation in removing polycyclic aromatic hydrocarbons from the atmosphere. Nature 370, 49–51 (1994). https://doi.org/10.1038/370049a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/370049a0

  • Springer Nature Limited

This article is cited by

Navigation