Skip to main content
Log in

Three-dimensional structure of β-galactosidase from E. coli.

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

THE β-galactosidase from Escherichia coli was instrumental in the development of the operon model1, and today is one of the most commonly used enzymes in molecular biology. Here we report the structure of this protein and show that it is a tetramer with 222-point symmetry. The 1,023-amino-acid polypeptide chain2, 3 folds into five sequential domains, with an extended segment at the amino terminus. The participation of this amino-terminal segment in a subunit interface, coupled with the observation that each active site is made up of elements from two different subunits, provides a structural rationale for the phenomenon of (α-complementation. The structure represents the longest polypeptide chain for which an atomic structure has been determined. Our results show that it is possible successfully to study non-viral protein crystals with unit cell dimensions in excess of 500 Å and with relative molecular masses in the region of 2,000K per asymmetric unit. Non-crystallographic symmetry averaging proved to be a very powerful tool in the structure determination, as has been shown in other contexts31, 32

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jacob, F. & Monod, J. J. molec. Biol. 3, 318–356 (1961).

    Article  CAS  Google Scholar 

  2. Fowler, A. & Zabin, I. J. biol. Chem. 253, 5521–5525 (1978).

    CAS  PubMed  Google Scholar 

  3. Kalnins, A., Otto, K., Ruther, U. & Müller-Hill, B. EMBO J. 2, 593–597 (1983).

    Article  CAS  Google Scholar 

  4. Jacobson, R. H. & Matthews, B. W. J. molec. Biol. 223, 1177–1182 (1992).

    Article  CAS  Google Scholar 

  5. Tronrud, D. E., Ten Eyck, L. F. & Matthews, B. W. Acta crystallogr. A43, 489–501 (1987).

    Article  Google Scholar 

  6. Holmgren, A. & Brändén, C. I. Nature 342, 248–251 (1989).

    Article  ADS  CAS  Google Scholar 

  7. Brändén, C. Q. Rev. Biophys. 13, 317–330 (1980).

    Article  Google Scholar 

  8. Matthews, B. W., Jansonius, J. N., Colman, P. M., Schoenborn, B. P. & Dupourque, D. Nature New Biol. 238, 37–41 (1972).

    Article  CAS  Google Scholar 

  9. Celada, F., Ullmann, A. & Monod, J. Biochemistry 13, 5543–5547 (1974).

    Article  CAS  Google Scholar 

  10. Ring, M. & Huber, R. E. Arch. Biochem. Biophys. 283, 342–350 (1990).

    Article  CAS  Google Scholar 

  11. Gebler, J. C., Aebersold, R. & Withers, S. G. J. biol. Chem. 267, 11126–11130 (1992).

    CAS  PubMed  Google Scholar 

  12. Cupples, C. G., Miller, J. H. & Huber, R. E. J. biol. Chem. 265, 5512–5518 (1990).

    CAS  PubMed  Google Scholar 

  13. Ullmann, A., Jacob, F. & Monod, J. J. molec. Biol. 24, 339–343 (1967).

    Article  CAS  Google Scholar 

  14. Langley, K. E., Villarejo, M. R., Fowler, A. V., Zamenhof, P. J. & Zabin, I. Proc. natn. Acad. Sci. U.S.A. 72, 1254–1257 (1975).

    Article  ADS  CAS  Google Scholar 

  15. Weinstock, G. M., Berman, M. L. & Silhavy, T. J. in Gene Amplification and Analysis (eds Papes, T. S., Rosenberg, M. & Chirikjian, J. G.) 27–64 (Elsevier, New York, 1983).

    Google Scholar 

  16. Zabin, I. Molec. cell. Biochem. 49, 87–96 (1982).

    Article  CAS  Google Scholar 

  17. Henderson, D. R., Friedman, S. B., Harris, J. D., Manning, W. B. & Zoccoli, M. A. Clin. Chem. 32, 1637–1641 (1986).

    CAS  PubMed  Google Scholar 

  18. Adams, R. M. et al. J. biol. Chem. 269, 5666–5672 (1994).

    CAS  PubMed  Google Scholar 

  19. Heinz, D. W. & Matthews, B. W. Prot. Engng 7, 301–307 (1994).

    Article  CAS  Google Scholar 

  20. Sakabe, N. Nucl. Inst. Meth. A303, 448–463 (1991).

    Article  ADS  Google Scholar 

  21. Higashi, T. J. appl. Cryst. 22, 9–18 (1989).

    Article  CAS  Google Scholar 

  22. Terwilliger, T. & Eisenberg, D. Acta crystallogr. A39, 813–817 (1983).

    Article  Google Scholar 

  23. Rayment, I. Acta crystallogr. A39, 102–116 (1983).

    Article  Google Scholar 

  24. Kraulis, P. J. J. appl. Cryst. 24, 946–950 (1991).

    Article  Google Scholar 

  25. Kabsch, W. & Sander, C. Biopolymers 22, 2577–2637 (1983).

    Article  CAS  Google Scholar 

  26. Stokes, H. W., Betts, P. W. & Hall, B. G. Molec. Biol. Evol. 2, 469–477 (1985).

    CAS  PubMed  Google Scholar 

  27. Buvinger, W. E. & Riley, M. J. Bact. 163, 850–957 (1985).

    CAS  PubMed  Google Scholar 

  28. Schroeder, C. J., Robert, C., Lenzen, G., McKay, L. L. & Mercenier, A. J. gen. Microbiol. 137, 369–380 (1991).

    Article  CAS  Google Scholar 

  29. Schmidt, B. F., Adams, R. M., Requadt, C., Power, S. & Mainzer, S. E. J. Bact. 171, 625–635 (1989).

    Article  CAS  Google Scholar 

  30. Hancock, K. R. et al. J. Bact. 173, 3084–3095 (1991).

    Article  CAS  Google Scholar 

  31. Gaykema, W. P. J. et al. Nature 309, 23–29 (1984).

    Article  ADS  CAS  Google Scholar 

  32. Rossmann, M. G. et al. Nature 317, 145–153 (1985).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jacobson, R., Zhang, XJ., DuBose, R. et al. Three-dimensional structure of β-galactosidase from E. coli.. Nature 369, 761–766 (1994). https://doi.org/10.1038/369761a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/369761a0

  • Springer Nature Limited

This article is cited by

Navigation