Skip to main content
Log in

Assembly of porphyrin building blocks into network structures with large channels

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

CRYSTAL engineering—the deliberate design and construction of crystal structures from molecular components—promises to provide solid-state materials with specific and useful chemical, mechanical, electronic or optical properties1. In most of the molecular crystals considered so far, van der Waals forces and hydrogen bonding govern the crystal packing2–7. Zeolites, pillared clays and related microporous materials, which have been studied extensively because their porous structures convey useful catalytic activity8,9, can now also be 'engineered' to some extent10,11. We are exploring ways12–14 to construct channelled solids with very different chemical architectures and potentially different catalytic activity from those of zeolites. Here we show that porphyrin building blocks can be used to construct three-dimensional networks with the topology of the PtS structure, containing large channels. In our materials the channels are filled with solvent molecules, and crystalline order is lost on solvent removal. Nevertheless, the results show that it is possible to use simple molecular building blocks to engineer specific frameworks which, if they can be made robust, may offer new catalytic potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bein, T. (ed.) Supramolecular Architecture 88–253 (ACS Symp. Ser. No. 499, Am. Chem. Soc., Washington DC, 1992).

    Google Scholar 

  2. Desiraju, G. R. Crystal Engineering: The Design of Organic Solids (Elsevier, Amsterdam, 1989).

    Google Scholar 

  3. Fagan, P. J. & Ward, M. D. Scient. Am. 267, 28–34 (1992).

    Article  Google Scholar 

  4. Simard, M., Su, D. & Wuest, J. D. J. Am. chem. Soc. 113, 4696–4698 (1991).

    Article  CAS  Google Scholar 

  5. Ermer, O. J. Am. chem. Soc. 110, 3747–3754 (1988).

    Article  CAS  Google Scholar 

  6. MacNicol, D. D., McKendrick, J. J. & Wilson, D. R. Chem. Soc. Rev. 7, 65–87 (1978).

    Article  CAS  Google Scholar 

  7. MacNicol, D. D. Inclusion Compounds Vol. 2, 1–45 (Academic, London, 1984).

    Google Scholar 

  8. Derouane, E. G., Lemos, F., Naccache, C. & Ribeiro, F. R. (eds) Zeolite Microporous Solids: Synthesis, Structure and Reactivity (NATO ASI Ser. C, Vol. 352, Kluwer Academic, Dordrecht, 1992).

    Google Scholar 

  9. Kerr, G. T. Scient. Am. 261, 82–87 (1989).

    Article  Google Scholar 

  10. Estermann, M., McKusker, L. B., Baerlocher, C., Merrouche, A. & Kessler, H. Nature 352, 320–322 (1991).

    Article  ADS  CAS  Google Scholar 

  11. Davis, M. E., Saldarriaga, C., Montes, C., Garces, J. & Crouder, C. Nature 331, 698–699 (1988).

    Article  ADS  CAS  Google Scholar 

  12. Bein, T. (ed.) Supramolecular Architecture 256–273 (ACS Symp. Ser. No. 499, Am. Chem. Soc., Washington DC, 1992).

    Google Scholar 

  13. Hoskins, B. F. & Robson, R. J. Am. chem. Soc. 112, 1546–1554 (1990).

    Article  CAS  Google Scholar 

  14. Gable, R. W., Hoskins, B. F. & Robson, R. J. chem. Soc., chem. Commun. 762–763 (1990).

  15. Byrn, M. P. et al. J. Amer. chem. Soc. 115, 9480–9497 (1993).

    Article  CAS  Google Scholar 

  16. Wohrle, D. in Phthalocyanins: Properties and Applications (eds Leznoff, C. C. & Lever, A. B. P.) 55–132 (VCH, New York, 1989).

    Google Scholar 

  17. Takemoto, K., Inaki, Y. & Ottenbrite, R. M. Functional Monomers and Polymers (Dekker, New York, 1987).

    Google Scholar 

  18. Collman, J. P. et al Proc. natn. Acad. Sci. U.S.A. 83, 4581–4585 (1986).

    Article  ADS  CAS  Google Scholar 

  19. Gunter, M. J. et al. Inorg. Chem. 23, 283–300 (1984).

    Article  CAS  Google Scholar 

  20. Fleischer, E. B. & Shachter, A. M. Inorg. Chem. 30, 3763–3769 (1991).

    Article  CAS  Google Scholar 

  21. Abrahams, B. F., Hoskins, B. F. & Robson, R. J. Am. chem. Soc. 113, 3606–3607 (1991).

    Article  CAS  Google Scholar 

  22. Sessler, J. L., Johnson, A. R., Lin, T.-Y. & Creager, S. E. J. Am. chem. Soc. 110, 3659–3661 (1988).

    Article  CAS  Google Scholar 

  23. Walter, C. J., Anderson, H. L. & Sanders, J. K. M. J. chem. Soc. chem. Commun. 458–460 (1993).

  24. Fujita, M., Kwon, Y. J., Washizu, S. & Ogura, K. J. Am. chem. Soc. 116, 1151–1152 (1994).

    Article  CAS  Google Scholar 

  25. Sheldrick, G. M. in Crystallographic Computing Vol. 3 (eds Sheldrick, G. M., Kruger, C. & Goddard, R.) 175–189 (Oxford Univ. Press, 1985).

    Google Scholar 

  26. Sheldrick, G. M. SHELXS-76, a Program for Crystal Structure Determination (Univ. Cambridge, 1976).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abrahams, B., Hoskins, B., Michail, D. et al. Assembly of porphyrin building blocks into network structures with large channels. Nature 369, 727–729 (1994). https://doi.org/10.1038/369727a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/369727a0

  • Springer Nature Limited

This article is cited by

Navigation