Skip to main content
Log in

Excitation-contraction uncoupling and muscular degeneration in mice lacking functional skeletal muscle ryanodine-receptor gene

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

CONTRACTION of skeletal muscle is triggered by the release of Ca2+ from the sarcoplasmic reticulum (SR) after depolarization of transverse tubules1,2. The ryanodine receptor exists as a 'foot' protein in the junctional gap between the sarcoplasmic reticulum and the transverse tubule in skeletal muscle, and is proposed to function as a calcium-release channel during excitation-contraction (E-C) coupling3–6. Previous complementary DNA-cloning studies have defined three distinct subtypes of the ryanodine receptor in mammalian tissues, namely skeletal muscle, cardiac and brain types7–12. We report here mice with a targeted mutation in the skeletal muscle ryanodine receptor gene. Mice homozygous for the mutation die perinatally with gross abnormalities of the skeletal muscle. The contractile response to electrical stimulation under physiological conditions is totally abolished in the mutant muscle, although ryanodine receptors other than the skeletal-muscle type seem to exist because the response to caffeine is retained. Our results show that the skeletal muscle ryanodine receptor is essential for both muscular maturation and E-C coupling, and also imply that the function of the skeletal muscle ryanodine receptor during E-C coupling cannot be substituted by other subtypes of the receptor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Endo, M. Physiol. Rev. 57, 71–108 (1977).

    Article  CAS  Google Scholar 

  2. Martonosi, A. N. Physiol. Rev. 64, 1240–1320 (1984).

    Article  CAS  Google Scholar 

  3. Fleischer, S. & Inui, M. A. Rev. Biophys. biophys. Chem. 18, 333–364 (1989).

    Article  CAS  Google Scholar 

  4. McPherson, P. S. & Campbell, K. P. J. biol. Chem. 268, 13765–13768 (1993).

    CAS  PubMed  Google Scholar 

  5. Lai, F. A., Erickson, H. P., Rousseau, E., Liu, Q-Y. & Meissner, G. Nature 331, 315–319 (1988).

    Article  CAS  ADS  Google Scholar 

  6. Block, B. A., Imagawa, T., Campbell, K. P. & Franzini-Armstrong, C. J. Cell Biol. 107, 2587–2600 (1988).

    Article  CAS  Google Scholar 

  7. Takeshima, H. et al. Nature 339, 439–445 (1989).

    Article  CAS  ADS  Google Scholar 

  8. Zorzato, F. et al. J. biol. Chem. 265, 2244–2256 (1990).

    CAS  PubMed  Google Scholar 

  9. Otsu, K. et al. J. biol. Chem. 265, 13472–13483 (1990).

    CAS  Google Scholar 

  10. Nakai, J. et al. FEBS Lett. 271, 169–177 (1990).

    Article  CAS  ADS  Google Scholar 

  11. Giannini, G., Clementi, E., Ceci, R., Marziali, G. & Sorrentino, V. Science 257, 91–94 (1992).

    Article  CAS  ADS  Google Scholar 

  12. Hakamata, Y., Nakai, J., Takeshima, H. & Imoto, K. FEBS Lett. 312, 229–235 (1992).

    Article  CAS  Google Scholar 

  13. Li, E., Bestor, T. H. & Jaenisch, R. Cell 69, 915–926 (1992).

    Article  CAS  Google Scholar 

  14. Hasty, P. et al. Nature 364, 501–506 (1993).

    Article  CAS  ADS  Google Scholar 

  15. Nabeshima, Y. et al. Nature 364, 532–535 (1993).

    Article  CAS  ADS  Google Scholar 

  16. Gluecksohn-Waelsch, S. Science 142, 1269–1276 (1963).

    Article  CAS  ADS  Google Scholar 

  17. Pai, A. C. Devl Biol. 11, 82–92 (1965).

    Article  CAS  Google Scholar 

  18. Klaus, M. M., Scordilis, S. P., Rapalus, J. M., Briggs, R. T. & Powell, J. A. Devl Biol. 99, 152–165 (1983).

    Article  CAS  Google Scholar 

  19. Beam, K. G., Knudson, C. M. & Powell, J. A. Nature 320, 168–170 (1986).

    Article  CAS  ADS  Google Scholar 

  20. Chaudhari, N. J. biol. Chem. 267, 25636–25639 (1992).

    CAS  PubMed  Google Scholar 

  21. Pai, A. C. Devl Biol. 11, 93–109 (1965).

    Article  CAS  Google Scholar 

  22. Rios, E. & Brum, G. Nature 325, 717–720 (1987).

    Article  CAS  ADS  Google Scholar 

  23. Tanabe, T., Beam, K. G., Powell, J. A. & Numa, S. Nature 336, 134–139 (1988).

    Article  CAS  ADS  Google Scholar 

  24. Numa, S. et al. Cold Spring Harb. Symp. q. Biol. 40, 1–7 (1990).

    Google Scholar 

  25. Braum, T., Rudnicki, M. A., Arnold, H-H. & Jaenisch, R. Cell 71, 369–382 (1992).

    Article  Google Scholar 

  26. Sanger, F., Nicklen, S. & Coulson, A. R. Proc. natn. Acad. Sci. U.S.A. 74, 5463–5467 (1977).

    Article  CAS  ADS  Google Scholar 

  27. Rudnicki, M. A., Braun, T., Hinuma, S. & Jaenisch, R. Cell 71, 383–390 (1992).

    Article  CAS  Google Scholar 

  28. Southern, E. M. Meth. Enzym. 68, 152–176 (1979).

    Article  CAS  Google Scholar 

  29. Mansour, A. P. & Bradley, A. Cell 62, 1073–1085 (1990).

    Article  Google Scholar 

  30. Saiki, R. K. et al. Science 239, 487–491 (1988).

    Article  CAS  ADS  Google Scholar 

  31. Chirgwin, J. M., Przybyla, A. E., MacDonald, R. J. & Rutter, W. J. Biochemistry 18, 5294–5299 (1979).

    Article  CAS  Google Scholar 

  32. Mishina, M. et al. Nature 321, 406–411 (1986).

    Article  CAS  ADS  Google Scholar 

  33. Saito, A., Seiler, S., Chu, A. & Fleischer, S. J. Cell Biol. 103, 741–753 (1986).

    Article  Google Scholar 

  34. Takeshima, H., Nishimura, S., Nishi, M., Ikeda, M. & Sugimoto, T. FEBS Lett. 322, 105–110 (1993).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takeshima, H., lino, M., Takekura, H. et al. Excitation-contraction uncoupling and muscular degeneration in mice lacking functional skeletal muscle ryanodine-receptor gene. Nature 369, 556–559 (1994). https://doi.org/10.1038/369556a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/369556a0

  • Springer Nature Limited

This article is cited by

Navigation