Skip to main content
Log in

Titanium-containing mesoporous molecular sieves for catalytic oxidation of aromatic compounds

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

TITANIUM silicalite is an effective molecular-sieve catalyst for the selective oxidation of alkanes, the hydroxylation of phenol and the epoxidation of alkenes in the presence of H2O2 (refs 1–3). The range of organic compounds that can be oxidized is greatly limited, however, by the relatively small pore size (about 0.6 nm) of the host framework4. Large-pore (mesoporous) silica-based molecular sieves have been prepared recently by Kresge et all5–7 and Kuroda et al8.; the former used a templating approach in which the formation of an inorganic mesoporous structure is assisted by self-organization of surfactants, and the latter involved topochemical rearrangement of a layered silica precursor. Here we describe the use of the templating approach to synthesize mesoporous silica-based molecular sieves partly substituted with titanium—large-pore analogues of titanium silicalite. We find that these materials show selective catalytic activity towards the oxidation of 2,6-ditert-butyl phenol to the corresponding quinone and the conversion of benzene to phenol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Taramasso, M., Perego, G. & Notari, B. US Patent No. 4410501 (1983).

  2. Huybrechts, D. R. C., De Bruycker, L. & Jacobs, P. A. Nature 345, 240–242 (1990).

    Article  ADS  CAS  Google Scholar 

  3. Notari, B. Structure-Activity and Selectivity Relationships in Heterogeneous Catalysis (eds Grasselli, R. K. & Sleight, A. W.) 243–256 (Elsevier, Amsterdam, 1991).

    Book  Google Scholar 

  4. Flanigen, E. M. et al. Nature 271, 512–516 (1978).

    Article  ADS  CAS  Google Scholar 

  5. Kresge, C. T., Leonovicz, M. E., Roth, W. J. & Vartuli, J. C. US Patent No. 5098684 (1992).

  6. Kresge, C. T., Leonovicz, M. E., Roth, W. J., Vartuli, J. C. & Beck, J. S. Nature 359, 710–712 (1992).

    Article  ADS  CAS  Google Scholar 

  7. Beck, J. S. et al. J. Am. chem. Soc. 114, 10834–10843 (1992).

    Article  CAS  Google Scholar 

  8. Inagaki, S., Fukushima, Y. & Kuroda, K. J. chem. Soc. chem. Commun. 8, 680–682 (1993).

    Article  Google Scholar 

  9. Horvath, G. & Kawazoe, K. J. J. Chem. Engng Jap. 16, 470–475 (1983).

    Article  CAS  Google Scholar 

  10. Tangaraj, A., Kumar, R., Mirajkar, S. P. & Ratnasamy, P. J. Catal. 130, 1–8 (1991).

    Article  Google Scholar 

  11. Monnier, A. et al. Science 261, 1299–1303 (1993).

    Article  ADS  CAS  Google Scholar 

  12. Sing, K. S. W. et al. Pure appl. Chem. 57, 603–619 (1985).

    Article  CAS  Google Scholar 

  13. Sheldon, R. A. New Developments in Selective Oxidation (eds Centi, G. & Trifiro, F.) 1–32 (Elsevier, Amsterdam, 1990).

    Book  Google Scholar 

  14. Neumann, R., Chava, M. & Levin, M. J. chem. Soc. chem. Commun. 22, 1685–1687 (1993).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tanev, P., Chibwe, M. & Pinnavaia, T. Titanium-containing mesoporous molecular sieves for catalytic oxidation of aromatic compounds. Nature 368, 321–323 (1994). https://doi.org/10.1038/368321a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/368321a0

  • Springer Nature Limited

This article is cited by

Navigation