Skip to main content
Log in

Interaction of E. coli Ffh/4.5S ribonucleoprotein and FtsY mimics that of mammalian signal recognition particle and its receptor

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

THE mechanism of protein translocation across the endoplasmic reticulum membrane of eukaryotic cells and the plasma membrane of prokaryotic cells are thought to be evolutionarily related1–7. Protein targeting to the eukaryotic translocation apparatus is mediated by the signal recognition particle (SRP), a cytosolic ribonucleoprotein, and the SRP receptor, an endoplasmic reticulum membrane protein8,9. During targeting, the 54K SRP subunit (Mr 54,000; SRP54), a GTP-binding protein10–12, binds to signal sequences13,14 and then interacts with the α-subunit of the SRP receptor (SRα), another GTP-binding protein12,15. Two proteins from Escherichia coli, Ffh and FtsY, structurally resemble SRP54 and SRα10,11,16. Like SRP54, Ffh is a subunit of a cytosolic ribonucleoprotein that also contains the E. coli 4.5S RNA17,18. Although there is genetic and biochemical evidence that the E. coli Ffh/4.5S ribonucleoprotein has an SRP-like function19–21, there is no evidence for an SRα-like role for FtsY. Here we show that the Ffh/4.5S ribonucleoprotein binds tightly to FtsY in a GTP-dependent manner. This interaction results in the stimulation of GTP hydrolysis which can be inhibited by synthetic signal peptides. These properties mimic those of mammalian SRP and its receptor, suggesting that the E. coli Ffh/4.5S ribonucleoprotein and FtsY have functions in protein targeting that are similar to those of their mammalian counterparts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Blobel, G. Proc. natn. Acad. Sci. U.S.A. 77, 1496–1500 (1980).

    Article  ADS  CAS  Google Scholar 

  2. Briggs, M. S. & Gierasch, L. M. Adv. Prot. Chem. 38, 109–180 (1986).

    CAS  Google Scholar 

  3. Müller, M., Ibrahimi, I., Chang, C. N., Walter, P. & Blobel, G. J. biol. Chem. 257, 11860–11863 (1982).

    PubMed  Google Scholar 

  4. Smith, R. A., Duncan, M. J. & Moir, D. T. Science 1219–1224 (1985).

    Article  ADS  CAS  Google Scholar 

  5. Roggenkamp, R., Kustermann-Kuhn, B. & Hollenberg, C. P. Proc. natn. Acad. Sci. U.S.A. 78, 4466–4470 (1981).

    Article  ADS  CAS  Google Scholar 

  6. Görlich, D., Prehn, S., Hartmann, E., Kalies, K.-U. & Rapoport, T. A. Cell 71, 489–503 (1992).

    Article  Google Scholar 

  7. Hartmann, E. et al. Nature 367, 654–657 (1994).

    Article  ADS  CAS  Google Scholar 

  8. Nunnari, J. & Walter, P. Curr. Opin. Cell Biol. 4, 573–580 (1992).

    Article  CAS  Google Scholar 

  9. Rapoport, T. A. Science 258, 931–936 (1992).

    Article  ADS  CAS  Google Scholar 

  10. Bernstein, H. D. et al. Nature 340, 482–486 (1989).

    Article  ADS  CAS  Google Scholar 

  11. Römisch, K. et al. Nature 340, 478–482 (1989).

    Article  ADS  Google Scholar 

  12. Miller, J. D., Wilhelm, H., Gierasch, L., Gilmore, R. & Walter, P. Nature 336, 351–354 (1993).

    Article  ADS  Google Scholar 

  13. Kurzchalia, T. V. et al. Nature 320, 634–636 (1986).

    Article  ADS  CAS  Google Scholar 

  14. Krieg, U. C., Walter, P. & Johnson, A. E. Proc. natn. Acad. Sci. U.S.A. 83, 8604–8608 (1986).

    Article  ADS  CAS  Google Scholar 

  15. Connolly, T. & Gilmore, R. Cell 57, 599–610 (1989).

    Article  CAS  Google Scholar 

  16. Ogg, S., Poritz, M. & Walter, P. Molec. Biol. Cell 3, 895–911 (1992).

    Article  CAS  Google Scholar 

  17. Poritz, M. A. et al. Science 250, 111–117 (1990).

    Article  CAS  Google Scholar 

  18. Ribes, V., Römisch, K., Giner, A., Dobberstein, B. & Tollervey, D. Cell 63, 591–600 (1990).

    Article  CAS  Google Scholar 

  19. Phillips, G. J. & Silhavy, T. J. Nature 359, 744–746 (1992).

    Article  ADS  CAS  Google Scholar 

  20. Luirink, J. et al. Nature 359, 741–743 (1992).

    Article  ADS  CAS  Google Scholar 

  21. Bernstein, H. D., Zopf, D., Freymann, D. M. & Walter, P. Proc. natn. Acad. Sci. U.S.A. 90, 5229–5233 (1993).

    Article  ADS  CAS  Google Scholar 

  22. Sammuelsson, T. & Olsson, M. Nucleic Acids Res. 21, 847–853 (1993).

    Article  Google Scholar 

  23. Emr, S. & Silhavy, T. J. Proc. natn. Acad. Sci. U.S.A. 80, 4599–4603 (1983).

    Article  ADS  CAS  Google Scholar 

  24. McKnight, C. J., Briggs, M. S. & Gierasch, L. M. J. biol. Chem. 264, 17293–17297 (1989).

    CAS  PubMed  Google Scholar 

  25. Chen, L., Tai, P. C. Briggs, M. S. & Gierasch, L. M. J. biol. Chem. 262, 1427–1429 (1987).

    CAS  PubMed  Google Scholar 

  26. Connolly, T., Rapiejko, P. J. & Gilmore, R. Science 252, 1171–1173 (1991).

    Article  ADS  CAS  Google Scholar 

  27. Smith, D. B. & Johnson, K. S. Gene 67, 31–40 (1988).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miller, J., Bernstein, H. & Walter, P. Interaction of E. coli Ffh/4.5S ribonucleoprotein and FtsY mimics that of mammalian signal recognition particle and its receptor. Nature 367, 657–659 (1994). https://doi.org/10.1038/367657a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/367657a0

  • Springer Nature Limited

This article is cited by

Navigation