Skip to main content

Advertisement

Log in

Potential effects of cloud optical thickness on climate warming

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

CLIMATE warming can cause changes in the optical properties of low clouds, which may in turn amplify or diminish the warming1,2. But both the sign and magnitude of such feedbacks have been uncertain, largely because the observational evidence for variations in the large-scale optical properties of clouds has been very limited. Recently, analysis of data from the International Satellite Cloud Climatology Project yielded a relationship between low-cloud optical thickness and cloud temperature that implies a positive feedback between clouds and climate3. Here we use a two-dimensional radiative–convective model to assess the effect of such a feedback on the climate change associated with a doubling of the atmospheric carbon dioxide concentration. We find that, zonally averaged, the feedback is positive in the Northern Hemisphere and is stronger at lower than at higher latitudes. The positive feedback amplifies the overall global climate sensitivity, and the latitudinal gradient in the strength of the feedback acts to eliminate the highlatitude amplification of the greenhouse warming predicted by most climate models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang, W.-C., Rossow, W. B., Yao, M. S. & Wolfson, M. J. atmos. Sci 38, 1167–1178 (1981).

    Article  ADS  Google Scholar 

  2. Platt, C. M. R. & Harshvardhan J. geophys. Res. 93, 11051–11058 (1988).

    Article  ADS  Google Scholar 

  3. Tselioudis, G., Rossow, W. B. & Rind, D. J. Clim. 5, 1484–1495 (1992).

    Article  ADS  Google Scholar 

  4. Ellis, J. S. thesis, Colorado State Univ. (1978).

  5. Ramanathan, V. et al. Science 243, 57–63 (1989).

    Article  ADS  CAS  Google Scholar 

  6. Hartmann, D. L., Ockert-Bell, M. E. & Ebert, E. E. J. Clim. 5, 1281–1304 (1992).

    Article  ADS  Google Scholar 

  7. Hansen, J. et al. in Climate Sensitivity: Analysis of Feedback Mechanisms (eds Hansen, J. E. & Takahashi, T.) 130–163 (Geophys. Monogr. Ser. No. 29, Am. Geophys. Un., Washington DC, 1984).

    Google Scholar 

  8. Somerville, R. C. J. & Remer, L. A. J. geophys. Res. 89, 9668–9672 (1984).

    Article  ADS  CAS  Google Scholar 

  9. Mitchell, J. F. B., Senior, C. A. & Ingram, W. J. Nature 34, 132–134 (1989).

    Article  ADS  Google Scholar 

  10. Roeckner, E. Nature 335, 304 (1988).

    Article  ADS  Google Scholar 

  11. Le Treut, H. & Li, Z.-X. Climate Dyn. 5, 175–187 (1991).

    Article  ADS  Google Scholar 

  12. Rossow, W. B. & Schiffer, R. A. Bull. Am met. Soc. 72, 2–20 (1991).

    Article  Google Scholar 

  13. Betts, A. K. & Harshvardhan . J. geophys. Res. 92, 8483–8485 (1987). (see ref. 2)

    Article  ADS  Google Scholar 

  14. Tselioudis, G. thesis, Columbia Univ. New York (1992).

  15. Hansen, J. et al. Mon. Weath. Rev. 111, 609–662 (1983).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tselioudis, G., Lacis, A., Rind, D. et al. Potential effects of cloud optical thickness on climate warming. Nature 366, 670–672 (1993). https://doi.org/10.1038/366670a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/366670a0

  • Springer Nature Limited

This article is cited by

Navigation