Skip to main content
Log in

Stabilization of a metastable crystalline phase by twinning

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

POLYMORPHISM of crystal structures—alternative crystal structures resulting from variations in ionic and molecular packing1 and conformation2—is important in a number of fields in solid-state chemistry, including biomineralization3 (in the mineral phases of calcium carbonate3, for example), polymer science (polypropylene4, for example), explosives (ammonium nitrate, lead azide5), nonlinear optical materials6, ceramics and catalysis (zeolites and metal oxides7). In the pharmaceutical and fine-chemicals industries, polymorphism is central to both production process design and product activity8. Here we show that crystal twinning can stabilize a crystal polymorph that is otherwise not the most stable form. We use electron microscopy, X-ray diffraction and Raman spectroscopy to show that the apparently indefinite persistence of a metastable polymorph of terephthalic acid can be explained on this basis. If twinning can be engineered, it may therefore provide a means for stabilizing crystal phases with useful physical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Verma, A. R. & Krishna, P. Polymorphism and Polytypism in Crystals 33–60 (Wiley, New York, 1966).

    Google Scholar 

  2. Bernstein, J. & Hagler, A. T. J. Am. chem. Soc. 100, 673–681 (1978)

    Article  CAS  Google Scholar 

  3. Bischoff, J. L. & Fyfe, W. S. Am. J. Sci. 266, 65–79 (1968).

    Article  ADS  CAS  Google Scholar 

  4. Keller, A., Goldbeck-Wood, G. & Hikosaka, M. J. chem. Soc., Faraday Disc., No. 95 (in the press).

  5. Hattori, K. & McCrone, W. Analyt. Chem. 28, 1791–1793 (1956).

    Article  CAS  Google Scholar 

  6. Hall, S. R. et al. J. Cryst. Growth 79, 745–751 (1986).

    Article  ADS  CAS  Google Scholar 

  7. Subotic, B. et al. Zeolites 2, 135–142 (1982).

    Article  CAS  Google Scholar 

  8. Davey, R. J. in Crystal Growth in Science and Technology NATO ASI Ser. (Eds Arend, H. & Hulliger, J.) 217–224 (Plenum, New York, 1989).

    Book  Google Scholar 

  9. Bailey, M. & Brown, C. J. Acta crystallogr. 22, 387–391 (1967).

    Article  CAS  Google Scholar 

  10. Berkovitch-Yellin, Z. & Leiserowitz, L. J. Am. chem. Soc. 104, 4052–4064 (1982).

    Article  CAS  Google Scholar 

  11. Gerasirnov, V. P., Zharikov, N. K., Korobkov, V. S., Ovchinnikov, I. V. & Rud, L. V. Zh. Prikl. Spectroskopii 34, 308–311 (1981).

    Google Scholar 

  12. Saska, M. & Myerson, A. S. Cryst. Res. Technol. 20, 201–208 (1985).

    Article  CAS  Google Scholar 

  13. Bhat, H. L. Clarke, S. M., El Korashy, A., & Roberts, K. J. J. appl. Crystallogr. 23, 545–549 (1990).

    Article  Google Scholar 

  14. Ozaki, T. & Shigeyasu, M. Maruzen Sekiyu Giho 20, 81–90 (1975).

    CAS  Google Scholar 

  15. Ostwald, W. Z. phys. Chem. 22, 289–330 (1897).

    CAS  Google Scholar 

  16. Avrami, M. J. chem. Phys. 7, 1103–1112 (1939).

    Article  ADS  CAS  Google Scholar 

  17. Cardew, P. T., Davey, R. J. & Ruddick, A. J. J. chem. Soc. Faraday Trans. 80, 659–668 (1984).

    Article  CAS  Google Scholar 

  18. Mnjukh, Ju. V. Molec. Cryst. Liq. Cryst. 52, 201–218 (1979).

    Article  Google Scholar 

  19. Davey, R. J. et al. J. Phys. D 24, 176–185 (1991).

    Article  ADS  CAS  Google Scholar 

  20. Davey, R. J. et al. J. chem. Soc., Faraday Trans. 88, 3461–3466 (1992).

    Article  CAS  Google Scholar 

  21. Davey, R. J., Harding, M. M. & Rule, R. J. J. Cryst. Growth. 144, 7–12 (1991).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Davey, R., Maginn, S., Andrews, S. et al. Stabilization of a metastable crystalline phase by twinning. Nature 366, 248–250 (1993). https://doi.org/10.1038/366248a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/366248a0

  • Springer Nature Limited

This article is cited by

Navigation