Skip to main content
Log in

Atomic-resolution chemical analysis using a scanning transmission electron microscope

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

A Corrigendum to this article was published on 09 November 2006

Abstract

THE high angle elastic scattering of electrons in scanning transmission electron microscopy depends strongly on the atomic number Z, of the sample atoms, through the Z2 dependence of the Rutherford scattering cross-section1. The detection of scattered electrons at high angles and over a large angular range (75& ndash;150 milliradians) removes the coherent effects of diffraction, and the resulting incoherent image provides a compositional map of the sample with high atomic-number contrast1. If a fine electron probe is used, and the sample is a crystalline material oriented along one of its principal axes, individual columns of atoms can be imaged in this way2. Electrons scattered at low angles are not used in this detection scheme, and are thus available for simultaneous electron energy-loss spectroscopy3; in principle, this combination of techniques should allow the direct chemical analysis of single atomic columns in crystalline materials. Here we present electron energy-loss spectra from expitaxial interfaces between cobalt silicide and silicon, which confirm that atomic resolution can be achieved by this approach. The ability to correlate structure and chemistry with atomic resolution holds great promise for the detailed study of defects and interfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pennycook, S. J. & Boatner, L. A. Nature 336, 565–567 (1988).

    Article  CAS  ADS  Google Scholar 

  2. Pennycook, S. J. & Jesson, D. E. Phys. Rev. Lett. 64, 938–941 (1990); Acta Metall. Mater. 40, S149–S159 (1992).

    Article  CAS  ADS  Google Scholar 

  3. Crewe, A. V., Wall, J. & Langmore, J. Science 168, 1338–1340 (1970).

    Article  CAS  ADS  Google Scholar 

  4. Jesson, D. E. & Pennycook, S. J. in 51st A. Proc. Microsc. Soc. Am. (eds Bailey, G. W. & Rieder, C. L.) 978–979 (San Francisco Press, California, 1993).

    Google Scholar 

  5. Loane, R. F., Xu, P. & Silcox, J. Ultramicroscopy 40, 121–138 (1992).

    Article  Google Scholar 

  6. Browning, N. D. & Pennycook, S. J. Microbeam Analysis 2, 81–89 (1993).

    CAS  Google Scholar 

  7. Browning, N. D., McGibbon, M. M., Chisholm, M. F. & Pennycook, S. J. in 51st A. Proc. Microsc. Soc. Am. (eds Bailey, G. W. & Rieder, C. L.) 576–577 (San Francisco Press, California, 1993).

    Google Scholar 

  8. Pennycook, S. J. Contemp. Phys. 23, 371–400 (1982).

    Article  CAS  ADS  Google Scholar 

  9. Kohl, H. & Rose, H. Adv. Electron. Electron Phys. 65, 175–200 (1985).

    Google Scholar 

  10. Ritchie, R. H. & Howie, A. Phil. Mag. A58, 753–767 (1988).

    Article  Google Scholar 

  11. Allen, L. J. & Rossouw, C. J. Phys. Rev. B42, 11644–11654 (1990).

    Article  CAS  Google Scholar 

  12. Scheinfein, M. R. & Isaacson, M. S. J. Vac. Sci. Technol. B4, 326–332 (1986).

    Article  CAS  Google Scholar 

  13. Batson, P. E. Phys. Rev. B44, 5556–5561 (1991).

    Article  CAS  ADS  Google Scholar 

  14. Browning, N. D., Yuan, J. & Brown, L. M. Phil. Mag. A67, 261–271 (1993).

    Article  Google Scholar 

  15. Browning, N. D., Chisholm, M. F., Pennycook, S. J., Norton, D. P. & Lowndes, D. H. Physica C212, 185–190 (1993).

    Article  CAS  Google Scholar 

  16. Batson, P. E. Ultramicroscopy 47, 133–144 (1992).

    Article  Google Scholar 

  17. de Jong, A. F. & Bulle-Liewma, C. W. T. Phil. Mag. A62, 183–201 (1990).

    Article  CAS  Google Scholar 

  18. Chisholm, M. F., Jesson, D. E., Pennycook, S. J. & Mantl, S. in 51st A. Proc. Microsc. Soc. Am. (eds Bailey, G. W. & Rieder, C. L.) 802–803 (San Francisco Press, California, 1993).

    Google Scholar 

  19. De Crescenzi, M., Derrien, J., Chainet, E. & Orumchian, K. Phys. Rev. B39, 5520–5523 (1989).

    Article  CAS  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Browning, N., Chisholm, M. & Pennycook, S. Atomic-resolution chemical analysis using a scanning transmission electron microscope. Nature 366, 143–146 (1993). https://doi.org/10.1038/366143a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/366143a0

  • Springer Nature Limited

This article is cited by

Navigation