Skip to main content
Log in

Identification of a proline residue as a transduction element involved in voltage gating of gap junctions

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

GAP junction channels are structurally distinct from other ion channels in that they comprise two hemichannels which interact head-to-head to form an aqueous channel between cells. Intercellular voltage differences together with increased intracellular concentrations of H+ and Ca2+ cause closure of these normally patent channels1. The relative sensitivity to voltage varies with the subunit (connexin) composition of the channels2. The third of four transmembrane-spanning regions (M3) in connexins has been proposed to form the channel lining3, and a global 'tilting' of the hemichannel subunits has been correlated with channel closure4. But specific components involved in transduction of channel gating events have not been identified in either gap junctions or other ion channel classes (however, see model in ref. 5). We have examined a strictly conserved proline centrally located in M2 of connexin proteins. Mutation of this proline (Pro 87) in connexin 26 causes a reversal in the voltage-gating response when the mutant hemichannel is paired with wild-type connexin 26 in the Xenopus oocyte system. This suggests that the unique properties associated with this residue are critical to the transduction of voltage gating in these channels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Spray, D. C. & Bennett, M. V. A. Rev. Physiol. 47, 281–303 (1985).

    Article  CAS  Google Scholar 

  2. Hennemann, H. et al. J. Cell Biol. 117, 1299–1310 (1992).

    Article  CAS  Google Scholar 

  3. Milks, L. C. et al. EMBO J. 7, 2967–2975 (1988).

    Article  CAS  Google Scholar 

  4. Unwin, P. N. T. & Ennis, P. D. Nature 307, 609–613 (1984).

    Article  ADS  CAS  Google Scholar 

  5. Guy, R. H. & Conti, F. Trends Neurosci. 13, 201–206 (1990).

    Article  CAS  Google Scholar 

  6. Yun, R. H., Anderson, A. & Hermans, J. Proteins Struct. Funct. Genet. 10, 219–228 (1991).

    Article  CAS  Google Scholar 

  7. Barlow, D. J. & Thornton, J. M. J. molec. Biol. 201, 601–619 (1988).

    Article  CAS  Google Scholar 

  8. Deisenhofer, J. et al. Nature 318, 618–624 (1985).

    Article  ADS  CAS  Google Scholar 

  9. Henderson, R. et al. J. molec Biol. 213, 899–929 (1985).

    Article  Google Scholar 

  10. Schulz, G. & Schirmer, R. H. Principles of Protein Structure (Springer, New York, 1979).

    Book  Google Scholar 

  11. Brandl, C. J. & Deber, C. M. Proc. natn. Acad. Sci. U.S.A. 83, 917–921, (1986).

    Article  ADS  CAS  Google Scholar 

  12. Lolkema, J. S., Puttner, I. B. & Kaback, H. R. Biochemistry 27, 8307–8310 (1988).

    Article  CAS  Google Scholar 

  13. Mogi, T., Stern, L. J., Chao, B. H. & Khorana, H. G. J. biol. Chem. 264, 14192–14196 (1989).

    CAS  PubMed  Google Scholar 

  14. Fimmel, A. L. et al. Biochem. J. 213, 451–458 (1983).

    Article  CAS  Google Scholar 

  15. Barrio, L. C. et al. Proc. natn. Acad. Sci. U.S.A. 88, 8410–8414 (1991).

    Article  ADS  CAS  Google Scholar 

  16. Bennett, M. V. L. et al. Gap Junctions (eds Hertzberg, E. L. & Johnson, R. G.) 287–304 (Liss, New York, 1988).

    Google Scholar 

  17. Werner, R. et al. Proc. natn. Acad. Sci. U.S.A. 86, 5380–5384 (1989).

    Article  ADS  CAS  Google Scholar 

  18. Verselis, V. K. et al. Neurosci. Abstr. 22nd annual meeting, Anaheim CA, Oct. 25–30, Abstr. 275.10 (1992).

  19. Veenstra, R. D. Am. J. Physiol. 258, C662–C672 (1990).

    Article  CAS  Google Scholar 

  20. Reed, K. E. et al. J. clin. Invest. 91, 997–1004 (1993).

    Article  CAS  Google Scholar 

  21. Haefligers, J. A. et al. J. biol. Chem. 267, 2057–2064 (1992).

    Google Scholar 

  22. Connolly, L. G. Comp. Biochem. Physiol. 93A, 221–231 (1989).

    Article  CAS  Google Scholar 

  23. Grenningloh, G. et al. Nature 338, 215–220 (1987).

    Article  ADS  Google Scholar 

  24. Schofield, P. R. et al. Nature 328, 221–227 (1987).

    Article  ADS  CAS  Google Scholar 

  25. Willecke, K. et al. J. Cell Biol. 114, 1049–1057 (1991).

    Article  CAS  Google Scholar 

  26. Kunkel, T. A. Proc. natn. Acad. Sci. U.S.A. 82, 488–492 (1985).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suchyna, T., Xu, L., Gao, F. et al. Identification of a proline residue as a transduction element involved in voltage gating of gap junctions. Nature 365, 847–849 (1993). https://doi.org/10.1038/365847a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/365847a0

  • Springer Nature Limited

This article is cited by

Navigation