Skip to main content
Log in

Cloning and characterization of the vasopressin-regulated urea transporter

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

UREA is the principal end product of nitrogen metabolism in mammals1. Movement of urea across cell membranes was originally thought to occur by lipid-phase permeation, but recent studies have revealed the existence of specialized transporters with a low affinity for urea (Km > 200 mM)2. Here we report the isolation of a complementary DNA from rabbit renal medulla that encodes a 397-amino-acid membrane glycoprotein, UT2, with the functional characteristics of the vasopressin-sensitive urea transporter previously described in in vitro-perfused inner medullary collecting ducts3,4. UT2 is not homologous to any known protein and displays a unique pattern of hydrophobicity. Because of the central role of this transporter in fluid balance1,3–7 and nitrogen metabolism8, the study of this protein will provide important insights into the urinary concentrating mechanism and nitrogen balance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Marsh, D. J. & Knepper, M. A. in Handbook of Physiology 8, Renal Physiology Vol. 2 (ed. Windhager, E. E.) 1317–1347 (Oxford Univ. Press, Oxford, 1992).

    Google Scholar 

  2. Chou, C-L., Sands, J. M., Nonoguchi, H. & Knepper, M. A. Am. J. Physiol. 258, F486–F494 (1990).

    CAS  PubMed  Google Scholar 

  3. Knepper, M. A. & Star, R. A. Am. J. Physiol. 259, F393–F401 (1990).

    CAS  PubMed  Google Scholar 

  4. Sands, J. M., Nonoguchi, H. & Knepper, M. A. Am. J. Physiol. 253, F823–F832 (1987).

    CAS  PubMed  Google Scholar 

  5. Knepper, M. A., Sands, J. M. & Chou, C-L. Am. J. Physiol. 256, F610–F621 (1989).

    CAS  PubMed  Google Scholar 

  6. Zhang, R. & Verkman, A. S. J. Membr. Biol. 117, 253–261 (1990).

    Article  CAS  Google Scholar 

  7. Sands, J. M. & Kokko, J. P. Kidney Int. 38, 695–699 (1990).

    Article  CAS  Google Scholar 

  8. Langran, M., Moran, B. J., Murphy, J. L. & Jackson, A. A. Clin. Science 82, 191–198 (1992).

    Article  CAS  Google Scholar 

  9. Hediger, M. A., Coady, M. J., Ikeda, T. S. & Wright, E. M. Nature 330, 379–381 (1987).

    Article  ADS  CAS  Google Scholar 

  10. Kanai, Y. & Hediger, M. A. Nature 360, 467–471 (1992).

    Article  ADS  CAS  Google Scholar 

  11. Knepper, M. A. & Roch-Ramel, F. Kidney Int. 31, 629–633 (1987).

    Article  CAS  Google Scholar 

  12. Kawamura, S. & Kokko, J. P. J. clin. Invest. 58, 604–612 (1976).

    Article  CAS  Google Scholar 

  13. Sands, J. M. & Knepper, M. A. J. clin. Invest. 79, 138–147 (1987)

    Article  CAS  Google Scholar 

  14. Chou, C-L. & Knepper, M. A. Am. J. Physiol. 257, F359–F365 (1989).

    CAS  PubMed  Google Scholar 

  15. Mayrand, R. R. & Levitt, D. G. J. gen. Physiol. 81, 221–237 (1983).

    Article  CAS  Google Scholar 

  16. Brahm, J. J. gen. Physiol. 82, 1–23 (1983).

    Article  CAS  Google Scholar 

  17. Toon, M. R. & Solomon, A. K. Biochim. biophys. Acta 940, 266–274 (1988).

    Article  CAS  Google Scholar 

  18. Mueckler, M. et al. Science 229, 941–945 (1985).

    Article  ADS  CAS  Google Scholar 

  19. Hediger, M. A., Mendlein, J., Lee, H. S. & Wright, E. M. Biochim. biophys. Acta 1064, 360–364 (1991).

    Article  CAS  Google Scholar 

  20. Star, R. A., Nonoguchi, H., Balaban, R. & Knepper, M. A. J. clin. Invest. 81, 1879–1888 (1988).

    Article  CAS  Google Scholar 

  21. Uezono, Y. et al. Recept. Channels 1, 233–241 (1991).

    Google Scholar 

  22. Fushimi, K. et al. Nature 361, 549–552 (1993).

    Article  ADS  CAS  Google Scholar 

  23. Effros, R. M., Murphy, C., Hacker, A. & Ozker, K. FASEB J. 6, A2073 (1992).

    Google Scholar 

  24. Effros, R. M., Murphy, C., Ozker, K. & Hacker, A. Am. J. Physiol. 263, L619–L626 (1992).

    CAS  PubMed  Google Scholar 

  25. Sands, J. M., Nonoguchi, H. & Knepper, M. A. in Vasopressin: Cellular and Integrative Functions (eds Cowley, A. W. Jr, Liard, J-F. & Ausiello, D. A.) 137–142 (Raven, New York, 1988).

    Google Scholar 

  26. Imai, M., Hayashi, M. & Araki, M. Pflügers Arch. 402, 385–392 (1984).

    Article  CAS  Google Scholar 

  27. Snutch, T. P., Leonard, J. P., Gilbert, M. M., Lester, H. A. & Davidson, N. Proc. natn. Acad. Sci. U.S.A. 87, 3391–3395 (1990).

    Article  ADS  CAS  Google Scholar 

  28. Kozak, M. Nucleic Acids Res. 12, 857–872 (1984).

    Article  CAS  Google Scholar 

  29. Kyte, J. & Doolittle, R. F. J. molec. Biol. 157, 105–132 (1982).

    Article  CAS  Google Scholar 

  30. Eisenberg, D., Schwarz, E., Komaromy, M. & Wall, R. J. molec. Biol. 179, 125–142 (1984).

    Article  CAS  Google Scholar 

  31. Hediger, M. A., Tyson, I., Coady, M., Gundersen, C. B. & Wright, E. M. Proc. natn. Acad. Sci. USA. 84, 2634–2637 (1987).

    Article  ADS  CAS  Google Scholar 

  32. Kanai, Y. et al. Am. J. Physiol. 263, F1087–F1093 (1992).

    CAS  PubMed  Google Scholar 

  33. Pallone, T. L., Work, J., Myers, R. L. & Jamison, R. L. J. clin. Invest. (in the press.)

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

You, G., Smith, C., Kanai, Y. et al. Cloning and characterization of the vasopressin-regulated urea transporter. Nature 365, 844–847 (1993). https://doi.org/10.1038/365844a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/365844a0

  • Springer Nature Limited

This article is cited by

Navigation