Skip to main content
Log in

Botulinum neurotoxin A selectively cleaves the synaptic protein SNAP-25

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

NEUROTRANSMITTER release is potently blocked by a group of structurally related toxin proteins produced by Clostridium botulinum1. Botulinum neurotoxin type B (BoNT/B) and tetanus toxin (TeTx) are zinc-dependent proteases that specifically cleave synaptobrevin (VAMP), a membrane protein of synaptic vesicles2,3. Here we report that inhibition of transmitter release from synaptosomes caused by botulinum neurotoxin A (BoNT/A) is associated with the selective proteolysis of the synaptic protein SNAP-25. Furthermore, isolated or recombinant L chain of BoNT/A cleaves SNAP-25 in vitro. Cleavage occurred near the carboxyterminus and was sensitive to divalent cation chelators. In addition, a glutamate residue in the BoNT/A L chain, presumably required to stabilize a water molecule in the zinc-containing cata-lytic centre, was required for proteolytic activity. These findings demonstrate that BoNT/A acts as a zinc-dependent protease that selectively cleaves SNAP-25. Thus, a second component of the putative fusion complex mediating synaptic vesicle exocytosis is targeted by a clostridial neurotoxin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Niemann, H. In Sourcebook of Bacterial Toxins (eds Alouf, J. E. & Freer, J. H.) 303–348 (Academic, New York, 1991).

    Google Scholar 

  2. Schiavo, G. et al. Nature 359, 832–835 (1992).

    Article  ADS  CAS  Google Scholar 

  3. Link, E. et al. Biochem. Biophys. Res. Commun. 189, 1017–1023 (1992).

    Article  CAS  Google Scholar 

  4. Nicholls, D. G. & Silhr, T. S. Nature 321, 772–773 (1986).

    Article  ADS  CAS  Google Scholar 

  5. Oyler, G. A. et al. J. Cell Biol. 109, 3039–3052 (1989).

    Article  CAS  Google Scholar 

  6. Bennett, M. K., Calakos, N. & Scheller, R. H. Science 257, 255–259 (1992).

    Article  ADS  CAS  Google Scholar 

  7. Ushkaryov, Y. A., Petrenko, A. G., Geppert, M. & Südhof, T. C. Science 257, 50–56 (1992).

    Article  ADS  CAS  Google Scholar 

  8. Südhof, T. C. & Jahn, R. Neuron 6, 665–677 (1991).

    Article  Google Scholar 

  9. Binz, T. et al. J. biol. Chem. 265, 9153–9158 (1990).

    CAS  PubMed  Google Scholar 

  10. Vallee, B. L. & Auld, D. S. Proc. natn. Acad. Sci. U.S.A. 87, 220–224 (1990).

    Article  ADS  CAS  Google Scholar 

  11. Gansel, M., Penner, R. & Dreyer, F. Pflügers Arch. 409, 533–539 (1987).

    Article  CAS  Google Scholar 

  12. Dreyer, F., Rosenberg, F., Becker, C., Bigalke, H. & Penner, R. Naunyn-Schmiedeberg's Arch. Pharmac. 335, 1–7 (1987).

    Article  CAS  Google Scholar 

  13. Catsicas, S. et al. Proc. natn. Acad. Sci. U.S.A. 88, 785–789 (1991).

    Article  ADS  CAS  Google Scholar 

  14. Hess, D. T., Slater, T. M., Wilson, M. C. & Skene, J. H. P. J. Neurosci. 12, 4634–4641 (1992).

    Article  CAS  Google Scholar 

  15. Söllner, T. et al. Nature 362, 318–324 (1993).

    Article  ADS  Google Scholar 

  16. Rothman, J. E. & Orci, L. Nature 355, 409–415 (1992).

    Article  ADS  CAS  Google Scholar 

  17. Fischer von Mollard, G., Südhof, T. C. & Jahn, R. Nature 349, 79–81 (1991).

    Article  ADS  CAS  Google Scholar 

  18. Baumert, M., Maycox, P. R., Navone, F., De Camilli, P. & Jahn, R. EMBO J. 8, 379–384 (1989).

    Article  CAS  Google Scholar 

  19. Brose, N., Petrenko, A. G., Südhof, T. C. & Jahn, R. Science 256, 1021–1025 (1992).

    Article  ADS  CAS  Google Scholar 

  20. Jahn, R., Schiebler, W., Ouimet, C. & Greengard, P. Proc. natn. Acad. Sci. U.S.A. 82, 4137–4141 (1985).

    Article  ADS  CAS  Google Scholar 

  21. Buckley, K. & Kelly, R. B. J. Cell Biol. 100, 1284–1294 (1985).

    Article  CAS  Google Scholar 

  22. Barnstable, C. J., Hofstein, R. & Akagawa, K. Devl Brain Res. 20, 286–290 (1985).

    Article  CAS  Google Scholar 

  23. Matteoli, M. et al. J. Cell Biol. 115, 625–633 (1991).

    Article  CAS  Google Scholar 

  24. Laemmli, U. K. Nature 227, 680–685 (1970).

    Article  ADS  CAS  Google Scholar 

  25. Bradford, M. M. Analyt. Biochem. 72, 248–254 (1976).

    Article  CAS  Google Scholar 

  26. Olmsted, J. B. Meth. Enzym. 134, 467–472 (1987).

    Article  Google Scholar 

  27. Sugii, S. & Sakaguchi, G. Infect. Immun. 12, 1262–1270 (1975).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Perin, M. S., Fried, V. A., Mignery, G. A., Jahn, R. & Südhof, T. C. Nature 354, 260–263 (1990).

    Article  ADS  Google Scholar 

  29. Seed, B. Nature 329, 840–842 (1987).

    Article  ADS  CAS  Google Scholar 

  30. Chapman, E. R., Estep, R. P. & Storm, D. R. J. biol. Chem. 267, 25233–25238 (1992).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blasi, J., Chapman, E., Link, E. et al. Botulinum neurotoxin A selectively cleaves the synaptic protein SNAP-25. Nature 365, 160–163 (1993). https://doi.org/10.1038/365160a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/365160a0

  • Springer Nature Limited

This article is cited by

Navigation