Skip to main content
Log in

CFTR and outward rectifying chloride channels are distinct proteins with a regulatory relationship

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

IN cystic fibrosis (CF), numerous epithelial cell functions are abnormal, including Cl conductance, sodium absorption, mucin sulphation and enzyme secretion1–4. Although the CF gene product, the cystic fibrosis transmembrane conductance regulator (CFTR), functions as a small linear Cl channel5–8, it is difficult to attribute such pleiotropic disease manifestations solely to a defect in Cl conductance. This has led to speculation that CFTR regulates the activity of other proteins. One possible example is the protein kinase A activation of outward rectifying Cl channels (ORCC), which is defective in membrane patches excised from CF cells9–16. Whether CFTR regulates the activity of an independent anion channel is debatable, because ORCC occur exclusively in excised membrane patches and could be an excision-induced molecular derivative of CFTR. 'Knockout' mice that lack CFTR17,18 provide a means to define the relationship between CFTR and ORCC. Here we report that ORCC are present in CFTR(−/−) mouse nasal epithelial cells and thus cannot be a derivative of the CFTR molecule. Also ORCC were regulated by protein kinase A in membrane patches from normal but not CFTR(−/−) cells. These observations are the first, to our knowledge definitive demonstration that CFTR regulates the activity of another protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Knowles, M. R. et al. Science 221, 1067–1070 (1983).

    Article  ADS  CAS  Google Scholar 

  2. Frizzell, R. A. Trends Neurosci. 10, 190–193 (1987).

    Article  CAS  Google Scholar 

  3. Cheng, P-W., Boat, T. F., Cranfill, K., Yankaskas, J. R. & Boucher, R. C. J. clin. Invest 84, 68–72 (1989).

    Article  CAS  Google Scholar 

  4. Quinton, P. M. FASEB J. 4, 2709–2717 (1990).

    Article  CAS  Google Scholar 

  5. Kartner, N. et al. Cell 64, 681–691 (1991).

    Article  CAS  Google Scholar 

  6. Anderson, M. P., Rich, D. P., Gregory, R. J., Smith, A. E. & Welsh, M. J. Science 251, 679–682 (1991).

    Article  ADS  CAS  Google Scholar 

  7. Berger, H. B. et al. J. clin. Invest. 88, 1422–1431 (1991).

    Article  CAS  Google Scholar 

  8. Bear, C. E. et al. Cell 68, 809–818 (1992).

    Article  CAS  Google Scholar 

  9. Egan, M. et al. Nature 358, 581–584 (1992).

    Article  ADS  CAS  Google Scholar 

  10. Frizzell, R. A., Rechkemmer, G. & Shoemaker, R. L. Science 233, 558–560 (1986).

    Article  ADS  CAS  Google Scholar 

  11. Li, M. et al. Science 244, 1353–1356 (1989).

    Article  ADS  CAS  Google Scholar 

  12. Chen, J. H., Schulman, H. & Gardner, P. Science 243, 657–660 (1989).

    Article  ADS  CAS  Google Scholar 

  13. Schoumacher, R. A. et al. Nature 330, 752–754 (1987).

    Article  ADS  CAS  Google Scholar 

  14. Hwang, T. C. et al. Science 244, 1351–1353 (1989).

    Article  ADS  CAS  Google Scholar 

  15. de Jonge, H. R., van den Berghe, N., Tilly, B. C., Kansen, M. & Bijman, J. Biochem. Soc. Trans. 17, 816–818 (1989).

    Article  CAS  Google Scholar 

  16. Jetten, A. M., Yankaskas, J. R., Stutts, M. J., Willumsen, N. J. & Boucher, R. C. Science 244, 1472–1475 (1989).

    Article  ADS  CAS  Google Scholar 

  17. Snouwaert, J. et al. Science 257, 1083–1088 (1992).

    Article  ADS  CAS  Google Scholar 

  18. Clarke, L. L. et al. Science 257, 1125–1128 (1992).

    Article  ADS  CAS  Google Scholar 

  19. Ward, C. L., Krouse, M. E., Gruenert, D. C., Kopito, R. R. & Wine, J. J. Proc. natn. Acad. Sci. U.S.A. 88, 5277–5281 (1991).

    Article  ADS  CAS  Google Scholar 

  20. Anderson, M. P., Sheppard, D. N., Berger, H. A. & Welsh, M. J. Am. J. Physiol. 263, L1–L14 (1992).

    CAS  PubMed  Google Scholar 

  21. Tabcharani, J. A. & Hanrahan, J. W. Am. J. Physiol. 261, 992–999 (1991).

    Google Scholar 

  22. Tabcharani, J. A., Low, W., Elie, D. & Hanrahan, J. W. FEBS Lett. 270, 157–164 (1990).

    Article  CAS  Google Scholar 

  23. Tabcharani, J. A., Chang, X. B., Riordan, J. R. & Hanrahan, J. W. Nature 352, 628–631 (1991).

    Article  ADS  CAS  Google Scholar 

  24. Gabriel, S. E., Price, E. M., Boucher, R. C. & Stutts, M. L. Am. J. Physiol. 263, C708–C713 (1992).

    Article  CAS  Google Scholar 

  25. Krauss, R. D. et al. EMBO J. 11, 875–883 (1992).

    Article  CAS  Google Scholar 

  26. Morris, A. P., Cunningham, S. A., Benos, D. J. & Frizzell, R. A. J. biol. Chem. 267, 5575–5583 (1992).

    CAS  PubMed  Google Scholar 

  27. Morris, A. P., Cunningham, S. A., Tousson, A., Benos, D. J. & Grizzell, R. A. Pediatr. Pulmonol. 8, suppl. 247 (1992).

    Google Scholar 

  28. Haws, C., Krouse, M. E., Xia, Y., Gruenert, D. C. & Wine, J. J. Pediatr. Pulmonol 8, suppl. 253 (1992).

    Google Scholar 

  29. Bradbury, N. A. et al. Science 256, 530–532 (1992).

    Article  ADS  CAS  Google Scholar 

  30. Luckacs, G. L. et al. J. biol. Chem. 267, 14568–14572 (1992).

    Google Scholar 

  31. Fischer, H. et al. Pfluegers Arch. (in the press).

  32. Stutts, M. J. et al. Proc. natn. Acad. Sci. U.S.A. 89, 1621–1625 (1992).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gabriel, S., Clarke, L., Boucher, R. et al. CFTR and outward rectifying chloride channels are distinct proteins with a regulatory relationship. Nature 363, 263–266 (1993). https://doi.org/10.1038/363263a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/363263a0

  • Springer Nature Limited

This article is cited by

Navigation