Skip to main content
Log in

Oncogene ect2 is related to regulators of small GTP-binding proteins

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

A Correction to this article was published on 19 August 1993

Abstract

WE have developed an efficient expression cloning system that allows rapid isolation of complementary DNAs able to induce the transformed phenotype1, 2. We searched for molecules expressed in epithelial cells and possessing transforming potential to fibro-blasts, and cloned a cDNA for the normal receptor of a growth factor secreted by NIH/3T3 cells3, 4. Here we report a second novel transforming gene, ect2. The isolated cDNA is activated by amino-terminal truncation of the normal product. The Ect2 protein has sequence similarity within a central core of 255 amino acids with the products of the breakpoint cluster gene, bcr (ref. 5), the yeast cell cycle gene, CDC24 (ref. 6), and the dbl oncogene7. Each of these genes encodes regulatory molecules or effectors for Rho-like small GTP-binding proteins8–10. The baculovirus-expressed Ect2 protein could bind highly specifically to Rho and Rac proteins, whereas the dbl product showed broader binding specificity to Rho family proteins. Thus ect2 is a new member of an expanding family, whose products have transforming properties and interact with Rho-like proteins of the Ras superfamily.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Miki, T., Matsui, T., Heidaran, M. A. & Aaronson, S. A. Gene 83, 137–146 (1989).

    Article  CAS  PubMed  Google Scholar 

  2. Miki, T. et al. Proc. natn. Acad. Sci. U.S.A. 88, 5167–5171 (1991).

    Article  ADS  CAS  Google Scholar 

  3. Miki, T. et al. Science 251, 72–75 (1991).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Miki, T. et al. Proc. natn. Acad. Sci. U.S.A. 89, 246–250 (1992).

    Article  ADS  CAS  Google Scholar 

  5. Hariharan, I. K. & Adams, J. M. EMBO J. 6, 115–119 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hartwell, L. H., Mortimer, R. K., Culotti, J. & Culotti, M. Genetics 74, 267–286 (1973).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Eva, A. & Aaronson, S. A. Nature 316, 273–275 (1985).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Diekmann, D. et al. Nature 351, 400–402 (1991).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Bender, A. & Pringle, J. R. Proc. natn. Acad. Sci. U.S.A. 86, 9976–9980 (1989).

    Article  ADS  CAS  Google Scholar 

  10. Hart, M. J., Eva, A., Evans, T., Aaronson, S. A. & Cerione, R. A. Nature 354, 311–314 (1991).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Ron, D. et al. New Biol. 3, 372–379 (1991).

    CAS  PubMed  Google Scholar 

  12. Adams, A. E. M., Johnson, D. I., Longnecker, R. M., Sloat, B. F. & Pringle, J. R. J. Cell Biol. 111, 131–142 (1990).

    Article  CAS  PubMed  Google Scholar 

  13. Munemitsu, S. et al. Molec. cell Biol. 10, 5977–5982 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Shinjo, K. et al. Proc. natn Acad. Sci. U.S.A. 87, 9853–9857 (1990).

    Article  ADS  CAS  Google Scholar 

  15. Summers, M. D. & Smith, G. E. Texas Exp Station Bulletin N. 1555 (1987).

  16. Bischoff, F. R. & Ponstingl, H. Proc. natn. Acad. Sci. U.S.A. 88, 10830–10834 (1991).

    Article  ADS  CAS  Google Scholar 

  17. Drivas, G. T., Shih, A., Coutavas, E., Rush, M. G. & D'Eustachio, P. Molec. cell. Biol. 10, 1793–1798 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Miyamoto, S., Ohya, Y., Ohsumi, Y. & Anraku, Y. Gene 54, 125–132 (1987).

    Article  CAS  PubMed  Google Scholar 

  19. Maru, Y. & Witte, O. N. Cell 67, 459–468 (1991).

    Article  CAS  PubMed  Google Scholar 

  20. Pendergast, A. M., Muller, A. J., Havlik, M. H., Maru, Y. & Witte, O. N. Cell 66, 161–171 (1991).

    Article  CAS  PubMed  Google Scholar 

  21. Adams, J. M., Houston, H., Allen, J., Lints, T. & Harvey, R. Oncogene 7, 611–618 (1982).

    Google Scholar 

  22. Shou, C., Farnsworth, C. L., Neel, B. G. & Feig, L. A. Nature 358, 351–354 (1992).

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Miyamoto, S. et al. Biochem. biophys. Res. Commun. 181, 604–610 (1991).

    Article  CAS  PubMed  Google Scholar 

  24. Prickett, K. S., Amberg, D. C. & Hopp, T. P. Biotechniques 7, 580–589 (1989).

    CAS  PubMed  Google Scholar 

  25. Studier, W., Rosenberg, A. H., Dunn, J. J. & Dubendorff, J. W. Meth. Enzym. 185, 60–89 (1990).

    Article  CAS  PubMed  Google Scholar 

  26. Vincent, S., Jeanteur, P. & Fort, P. Molec. cell. Biol 12, 3138–3148 {1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yeramin, P., Chardin, P., Madaule, P. & Tavitian, A. Nucleic Acids Res. 15, 1869–1869 (1987).

    Article  Google Scholar 

  28. Smith, D. B. & Johnson, K. S. Gene 67, 31–40 (1988).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miki, T., Smith, C., Long, J. et al. Oncogene ect2 is related to regulators of small GTP-binding proteins. Nature 362, 462–465 (1993). https://doi.org/10.1038/362462a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/362462a0

  • Springer Nature Limited

This article is cited by

Navigation