Skip to main content
Log in

Visualization of convective fluid flow in a porous medium

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

WHEN a horizontal layer of fluid is heated from below, it may undergo Rayleigh-Benard convection (RBC), leading to the spontaneous appearance of regular patterns of fluid flow1. The shadow-graph technique2, which allows visualization of the convection patterns, has assisted in developing an understanding of RBC. Related to RBC is convection in a fluid permeating a porous medium (called Horton-Rodgers-Lapwood convection or HRLC) when it is heated from below3–7. HRLC is relevant to geothermal applications and to flow in soils. Pattern formation in HRLC is less easily visualized by shadowgraph techniques because of the difficulties of transmitting light through the porous medium. Here we show how these difficulties can be overcome by constructing porous media in which the interfaces between solid and liquid are either parallel or perpendicular to the confining boundaries of the experimental system. Convection in such a medium can be visualized using conventional shadowgraph methods, and we compare the stationary flow patterns observed against measurements of heat transport.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Behringer, R. P. Rev. mod. Phys. 57, 657–687 (1985).

    Article  ADS  CAS  Google Scholar 

  2. Busse, F. H. & Whitehead, J. A. J. Fluid. Mech. 47, 305–320 (1971).

    Article  ADS  Google Scholar 

  3. Cheng, P. Adv. Heat Transf. 14, 1–105 (1978).

    Google Scholar 

  4. Combarnous, M. A. & Bories, S. A. Adv. Hydrosci. 10, 231–307 (1975).

    Article  Google Scholar 

  5. Horton, C. W. & Rodgers, R. T. J. appl. Phys. 16, 367–370 (1945).

    Article  ADS  MathSciNet  Google Scholar 

  6. Lapwood, E. Proc. Camb. phil. Soc. 44, 508–521 (1948).

    Article  ADS  MathSciNet  Google Scholar 

  7. Nield, D. A. & Bejan, A. Convection in Porous Media (Springer, New York, 1992).

    Book  Google Scholar 

  8. Johnsson, T. & Catton, I. ASME J. Heat Transf. 109, 371–377 (1987).

    Article  Google Scholar 

  9. Georgiadis, J. & Catton, I. ASME J. Heat Transf. 108, 284–290 (1986).

    Article  Google Scholar 

  10. Close, D. J., Simmons, J. G. & White, R. F. Int. J. Heat Mass Transf. 28, 2371–2378 (1985).

    Article  CAS  Google Scholar 

  11. Georgiadis, J. G. in Convective Heat and Mass Transfer in Porous Media Vol. 196 (eds Kakac, S. et al) 1073–1083 (Kluwer, Dordrecht, 1991).

    Book  Google Scholar 

  12. Klarsfeld, S. M. Rev. Gen. Thermique 9, 1403–1424 (1970).

    Google Scholar 

  13. Lister, C. B. R. J. Fluid Mech. 214, 287–320 (1990).

    Article  ADS  Google Scholar 

  14. Murray, B. T. & Chen, C. F. J. Fluid Mech. 201, 147–166 (1989).

    Article  ADS  CAS  Google Scholar 

  15. Rehberg, I. & Ahlers, G. Phys. Rev. Lett. 55, 500–504 (1985).

    Article  ADS  CAS  Google Scholar 

  16. Howle, L. E., Georgiadis, J. G. & Behringer, R. P. Topics in Heat Transfer HTD 206-1 (eds Keyhani, M. et al.) 17–23 (ASME, 1992).

    Google Scholar 

  17. Cross, M. C. Phys. Rev. A25(2), 1065–1076 (1982).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  18. Kvernvold, O. & Tyvand, P. A. J. Fluid Mech. 90(4), 609–624 (1979).

    Article  ADS  Google Scholar 

  19. Vincourt, M. C. Int. J. Eng. Sci. 27, 377–392 (1989).

    Article  MathSciNet  Google Scholar 

  20. Gollub, J. P. & Benson, S. V. J. Fluid Mech. 100, 449–470 (1980).

    Article  ADS  Google Scholar 

  21. Stork, K. & Müller, U. J. Fluid Mech. 54, 599–611 (1972).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Howle, L., Behringer, R. & Georgiadis, J. Visualization of convective fluid flow in a porous medium. Nature 362, 230–232 (1993). https://doi.org/10.1038/362230a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/362230a0

  • Springer Nature Limited

This article is cited by

Navigation