Skip to main content
Log in

How amino-acid insertions are allowed in an α-helix of T4 lysozyme

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

STUDIES of extant protein sequences indicate that amino-acid insertions and deletions are preferentially located in loop regions1, which has traditionally been explained as the result of selection removing deleterious mutations within secondary structural elements from the population. But there is no a priori reason to discount the possibility that insertions within secondary structure could either be tolerated until compensatory mutations arise, or have effects that are propagated away from secondary structure into loops. Earlier studies have indicated that insertions are generally tolerated, although much less well within secondary structure elements than in loop regions2–8. Here we show that amino-acid insertions in an α-helix of T4 lysozyme can be accepted in two different ways. In some cases the inserted amino acids are accommodated within the helix, leading to the translocation of wild-type residues from the helix to the preceding loop. In other cases the insertion causes a ‘looping-out’ in the first or last turn of the helix. The individual structural responses seem to be dominated by the maintenance of the interface between the helix and the rest of the protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pascarella, S. & Argos, P. J. molec. Biol. 224, 461–471 (1992).

    Article  CAS  Google Scholar 

  2. Barany, F. Proc. natn. Acad. Sci. U.S.A. 82, 4202–4206 (1985).

    Article  ADS  CAS  Google Scholar 

  3. Sondek, J. & Shortle, O. Proteins: Struct. Funct. Genet. 7, 299–305 (1990).

    Article  CAS  Google Scholar 

  4. Sondek, J. & Shortle, D. Proteins: Struct. Funct. Genet. 13, 132–140 (1992).

    Article  CAS  Google Scholar 

  5. Freimuth, P. I., Taylor, J. W. & Kaiser, E. T. J. biol. Chem. 265, 896–901 (1990).

    CAS  PubMed  Google Scholar 

  6. Marti, T., Otto, H., Rösselet, S. J., Heyn, M. P. & Khorana, H. G. Proc. natn. Acad. Sci. U.S.A. 89, 1219–1223 (1992).

    Article  ADS  CAS  Google Scholar 

  7. Starzyk, R. M., Burbaum, J. J. & Schimmel, P. Biochemistry 28, 8479–8484 (1989).

    Article  CAS  Google Scholar 

  8. Ladant, D., Glaser, P. & Ullmann, A. J. biol. Chem. 267, 2244–2250 (1992).

    CAS  PubMed  Google Scholar 

  9. Heinz, D. W., Baase, W. A. & Matthews, B. W. Proc. natn. Acad. Sci. U.S.A. 89, 3751–3755 (1992).

    Article  ADS  CAS  Google Scholar 

  10. Eriksson, A. E. et al. Science 255, 178–183 (1992).

    Article  ADS  CAS  Google Scholar 

  11. Gray, T. M. & Matthews, B. W. J. molec. Biol. 175, 75–81 (1984).

    Article  CAS  Google Scholar 

  12. Milner-White, E. J. & Poet, R. Trends biochem. Sci. 12, 189–192 (1987).

    Article  CAS  Google Scholar 

  13. McIntosh, L. P., Wand, A. J., Lowry, D. F., Redfield, A. G. & Dahlquist, F. W. Biochemistry 29, 6341–6362 (1990).

    Article  CAS  Google Scholar 

  14. Lee, B. & Richards, F. M. J. molec. Biol. 55, 379–400 (1971).

    Article  CAS  Google Scholar 

  15. Connolly, M. Science 221, 709–713 (1983).

    Article  ADS  CAS  Google Scholar 

  16. Lesk, A. M. & Chothia, C. J. molec. Biol. 136, 225–270 (1980).

    Article  CAS  Google Scholar 

  17. Presta, L. G. & Rose, G. D. Science 240, 1632–1641 (1988).

    Article  ADS  CAS  Google Scholar 

  18. Bashford, D., Chothia, C. & Lesk, A. M. J. molec. Biol. 196, 199–216 (1987).

    Article  CAS  Google Scholar 

  19. Dao-pin, S., Baase, W. A. & Matthews, B.W. Proteins: Struct Funct Genet. 7, 198–204 (1990).

    Article  CAS  Google Scholar 

  20. Zhang, X.-J., Baase, W. A. & Matthews, B. W. Biochemistry 30, 2012–2017 (1991).

    Article  CAS  Google Scholar 

  21. Becktel, W. J. & Schellman, J. A. Biopolymers 26, 1859–1877 (1987).

    Article  CAS  Google Scholar 

  22. Matsumura, M. & Matthews, B. W. Science 243, 792–794 (1989).

    Article  ADS  CAS  Google Scholar 

  23. Kunkel, T. A., Roberts, J. D. & Zakour, R. A. Meth. Enzym. 154, 367–382 (1987).

    Article  CAS  Google Scholar 

  24. Poteete, A. R., Dao-pin, S., Nicholson, H. & Matthews, B. W. Biochemistry 30, 1425–1432 (1991).

    Article  CAS  Google Scholar 

  25. Streisinger, G., Mukai, F., Dreyer, W. J., Miller, B. & Horiuchi, S. Cold Spring Harb. Symp. quant. Biol. XXVI, 25–30 (1961).

    Article  Google Scholar 

  26. Weaver, L. H. & Matthews, B. W. J. molec. Biol. 193, 189–199 (1987).

    Article  CAS  Google Scholar 

  27. Jancarik, J. & Kim, S.-H. J. appl. Crystallogr. 24, 409–411 (1991).

    Article  CAS  Google Scholar 

  28. Alber, T., Dao-pin, S., Nye, J. A., Muchmore, D. C. & Matthews, B. W. Biochemistry 26, 3754–3758 (1987).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heinz, D., Baase, W., Dahlquist, F. et al. How amino-acid insertions are allowed in an α-helix of T4 lysozyme. Nature 361, 561–564 (1993). https://doi.org/10.1038/361561a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/361561a0

  • Springer Nature Limited

This article is cited by

Navigation